运用归纳推理完成ocf网络

Q1 Mathematics
Christian Eichhorn, Gabriele Kern-Isberner
{"title":"运用归纳推理完成ocf网络","authors":"Christian Eichhorn,&nbsp;Gabriele Kern-Isberner","doi":"10.1016/j.jal.2015.03.006","DOIUrl":null,"url":null,"abstract":"<div><p>OCF-networks provide the possibility to combine qualitative information expressed by rankings of (conditional) formulas with the strong structural information of a network, in this respect being a qualitative variant of the better known Bayesian networks. Like for Bayesian networks, a global ranking function can be calculated quickly and efficiently from the locally distributed information, whereas the latter significantly reduces the exponentially high complexity of the semantical ranking approach. This qualifies OCF-networks for applications. However, in practical applications the provided ranking information may not be in the format needed to be represented by an OCF-network, or some values may be simply missing. In this paper, we present techniques for filling in the missing values using methods of inductive reasoning and we elaborate on formal properties of OCF-networks.</p></div>","PeriodicalId":54881,"journal":{"name":"Journal of Applied Logic","volume":"13 4","pages":"Pages 605-627"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jal.2015.03.006","citationCount":"11","resultStr":"{\"title\":\"Using inductive reasoning for completing OCF-networks\",\"authors\":\"Christian Eichhorn,&nbsp;Gabriele Kern-Isberner\",\"doi\":\"10.1016/j.jal.2015.03.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>OCF-networks provide the possibility to combine qualitative information expressed by rankings of (conditional) formulas with the strong structural information of a network, in this respect being a qualitative variant of the better known Bayesian networks. Like for Bayesian networks, a global ranking function can be calculated quickly and efficiently from the locally distributed information, whereas the latter significantly reduces the exponentially high complexity of the semantical ranking approach. This qualifies OCF-networks for applications. However, in practical applications the provided ranking information may not be in the format needed to be represented by an OCF-network, or some values may be simply missing. In this paper, we present techniques for filling in the missing values using methods of inductive reasoning and we elaborate on formal properties of OCF-networks.</p></div>\",\"PeriodicalId\":54881,\"journal\":{\"name\":\"Journal of Applied Logic\",\"volume\":\"13 4\",\"pages\":\"Pages 605-627\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jal.2015.03.006\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570868315000452\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Logic","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570868315000452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 11

摘要

ocf网络提供了将(条件)公式排序表示的定性信息与网络的强结构信息相结合的可能性,在这方面是更知名的贝叶斯网络的定性变体。与贝叶斯网络一样,贝叶斯网络可以从局部分布的信息中快速有效地计算出全局排序函数,而后者显著降低了语义排序方法的指数级复杂性。这使ocf网络适合应用程序。然而,在实际应用中,所提供的排名信息可能不是ocf网络所需要的格式,或者有些值可能根本就没有。在本文中,我们提出了用归纳推理的方法来填补缺失值的技术,并详细阐述了ocf网络的形式性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using inductive reasoning for completing OCF-networks

OCF-networks provide the possibility to combine qualitative information expressed by rankings of (conditional) formulas with the strong structural information of a network, in this respect being a qualitative variant of the better known Bayesian networks. Like for Bayesian networks, a global ranking function can be calculated quickly and efficiently from the locally distributed information, whereas the latter significantly reduces the exponentially high complexity of the semantical ranking approach. This qualifies OCF-networks for applications. However, in practical applications the provided ranking information may not be in the format needed to be represented by an OCF-network, or some values may be simply missing. In this paper, we present techniques for filling in the missing values using methods of inductive reasoning and we elaborate on formal properties of OCF-networks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Logic
Journal of Applied Logic COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
1.13
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Cessation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信