关键帧选择的监控视频摘要

Yan Yang, F. Dadgostar, Conrad Sanderson, B. Lovell
{"title":"关键帧选择的监控视频摘要","authors":"Yan Yang, F. Dadgostar, Conrad Sanderson, B. Lovell","doi":"10.1109/ICDSC.2011.6042925","DOIUrl":null,"url":null,"abstract":"We propose two novel techniques for automatic summarisation of lengthy surveillance videos, based on selection of frames containing scenes most informative for rapid perusal and interpretation by humans. In contrast to other video summarisation methods, the proposed methods explicitly focus on foreground objects, via edge histogram descriptor and a localised foreground information quantity (entropy) measurement. Frames are iteratively pruned until a preset summarisation rate is reached. Experiments on the publicly available CAVIAR dataset, as well as our own dataset focused on people walking through natural choke points (such as doors), suggest that the proposed method obtains considerably better results than methods based on optical flow, entropy differences and colour spatial distribution characteristics.","PeriodicalId":385052,"journal":{"name":"2011 Fifth ACM/IEEE International Conference on Distributed Smart Cameras","volume":"2003 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Summarisation of surveillance videos by key-frame selection\",\"authors\":\"Yan Yang, F. Dadgostar, Conrad Sanderson, B. Lovell\",\"doi\":\"10.1109/ICDSC.2011.6042925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose two novel techniques for automatic summarisation of lengthy surveillance videos, based on selection of frames containing scenes most informative for rapid perusal and interpretation by humans. In contrast to other video summarisation methods, the proposed methods explicitly focus on foreground objects, via edge histogram descriptor and a localised foreground information quantity (entropy) measurement. Frames are iteratively pruned until a preset summarisation rate is reached. Experiments on the publicly available CAVIAR dataset, as well as our own dataset focused on people walking through natural choke points (such as doors), suggest that the proposed method obtains considerably better results than methods based on optical flow, entropy differences and colour spatial distribution characteristics.\",\"PeriodicalId\":385052,\"journal\":{\"name\":\"2011 Fifth ACM/IEEE International Conference on Distributed Smart Cameras\",\"volume\":\"2003 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Fifth ACM/IEEE International Conference on Distributed Smart Cameras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSC.2011.6042925\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Fifth ACM/IEEE International Conference on Distributed Smart Cameras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSC.2011.6042925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

我们提出了两种新的技术来自动总结冗长的监控视频,基于选择包含最具信息量的场景,以便人类快速阅读和解释。与其他视频摘要方法相比,本文提出的方法通过边缘直方图描述符和局部前景信息量(熵)测量明确地关注前景对象。帧被迭代地修剪,直到达到预设的汇总率。在公开可用的CAVIAR数据集以及我们自己的数据集上进行的实验表明,所提出的方法比基于光流、熵差和色彩空间分布特征的方法获得了更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Summarisation of surveillance videos by key-frame selection
We propose two novel techniques for automatic summarisation of lengthy surveillance videos, based on selection of frames containing scenes most informative for rapid perusal and interpretation by humans. In contrast to other video summarisation methods, the proposed methods explicitly focus on foreground objects, via edge histogram descriptor and a localised foreground information quantity (entropy) measurement. Frames are iteratively pruned until a preset summarisation rate is reached. Experiments on the publicly available CAVIAR dataset, as well as our own dataset focused on people walking through natural choke points (such as doors), suggest that the proposed method obtains considerably better results than methods based on optical flow, entropy differences and colour spatial distribution characteristics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信