32维的细粒度情感分析

Xianchao Wu, Hang Tong, Momo Klyen
{"title":"32维的细粒度情感分析","authors":"Xianchao Wu, Hang Tong, Momo Klyen","doi":"10.1109/IALP.2017.8300624","DOIUrl":null,"url":null,"abstract":"Understanding human's complicated and capricious emotions remains a fundamental challenge. In this paper, we propose a fine-grained sentiment analysis system which classify emotions into 32 categories. For one direction, we cover more detailed emotions and for the other direction, we further measure each emotion with strength, such as describing angry by annoyance, anger and range. Taking Japanese as a test language, we describe our methods of building the training data, of constructing deep neural network classifiers, and of evaluating the models.","PeriodicalId":183586,"journal":{"name":"2017 International Conference on Asian Language Processing (IALP)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Fine-grained sentiment analysis with 32 dimensions\",\"authors\":\"Xianchao Wu, Hang Tong, Momo Klyen\",\"doi\":\"10.1109/IALP.2017.8300624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding human's complicated and capricious emotions remains a fundamental challenge. In this paper, we propose a fine-grained sentiment analysis system which classify emotions into 32 categories. For one direction, we cover more detailed emotions and for the other direction, we further measure each emotion with strength, such as describing angry by annoyance, anger and range. Taking Japanese as a test language, we describe our methods of building the training data, of constructing deep neural network classifiers, and of evaluating the models.\",\"PeriodicalId\":183586,\"journal\":{\"name\":\"2017 International Conference on Asian Language Processing (IALP)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Asian Language Processing (IALP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IALP.2017.8300624\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Asian Language Processing (IALP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP.2017.8300624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

理解人类复杂多变的情感仍然是一个根本性的挑战。在本文中,我们提出了一个细粒度的情感分析系统,将情感分为32类。对于一个方向,我们涵盖了更详细的情绪,而对于另一个方向,我们进一步测量每种情绪的强度,例如通过烦恼,愤怒和范围来描述愤怒。以日语为测试语言,介绍了构建训练数据、构建深度神经网络分类器和评估模型的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fine-grained sentiment analysis with 32 dimensions
Understanding human's complicated and capricious emotions remains a fundamental challenge. In this paper, we propose a fine-grained sentiment analysis system which classify emotions into 32 categories. For one direction, we cover more detailed emotions and for the other direction, we further measure each emotion with strength, such as describing angry by annoyance, anger and range. Taking Japanese as a test language, we describe our methods of building the training data, of constructing deep neural network classifiers, and of evaluating the models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信