{"title":"使用自动编码器的低复杂性图像绘制","authors":"Abeer Elbehery, Yasmine Fahmy, Mai Kafafy","doi":"10.1109/ICCSPA55860.2022.10019114","DOIUrl":null,"url":null,"abstract":"Image inpainting is filling the missing or corrupted pixels in an image in a realistic way that cannot be differentiated by human eye. Deep learning is widely used in image inpainting and it exhibits better performance than classical inpainting methods, but it requires high processing resources and longer time to train the model. In this paper, we propose an autoencoder architecture that outperforms other deep learning techniques in literature methods with lower processing and time complexity.","PeriodicalId":106639,"journal":{"name":"2022 5th International Conference on Communications, Signal Processing, and their Applications (ICCSPA)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low Complexity Image Inpainting Using AutoEncoder\",\"authors\":\"Abeer Elbehery, Yasmine Fahmy, Mai Kafafy\",\"doi\":\"10.1109/ICCSPA55860.2022.10019114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image inpainting is filling the missing or corrupted pixels in an image in a realistic way that cannot be differentiated by human eye. Deep learning is widely used in image inpainting and it exhibits better performance than classical inpainting methods, but it requires high processing resources and longer time to train the model. In this paper, we propose an autoencoder architecture that outperforms other deep learning techniques in literature methods with lower processing and time complexity.\",\"PeriodicalId\":106639,\"journal\":{\"name\":\"2022 5th International Conference on Communications, Signal Processing, and their Applications (ICCSPA)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 5th International Conference on Communications, Signal Processing, and their Applications (ICCSPA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSPA55860.2022.10019114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th International Conference on Communications, Signal Processing, and their Applications (ICCSPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSPA55860.2022.10019114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Image inpainting is filling the missing or corrupted pixels in an image in a realistic way that cannot be differentiated by human eye. Deep learning is widely used in image inpainting and it exhibits better performance than classical inpainting methods, but it requires high processing resources and longer time to train the model. In this paper, we propose an autoencoder architecture that outperforms other deep learning techniques in literature methods with lower processing and time complexity.