{"title":"HermitCore:用于极端规模计算的单内核","authors":"Stefan Lankes, Simon Pickartz, Jens Breitbart","doi":"10.1145/2931088.2931093","DOIUrl":null,"url":null,"abstract":"We expect that the size and the complexity of future supercomputers will increase on their path to exascale systems and beyond. Therefore, system software has to adapt to the complexity of these systems for a simplification of the development of scalable applications. In this paper, we present a unikernel operating system design for HPC. It extends the multi-kernel approach while providing better programmability and scalability for hierarchical systems, such as HLRS' Hazel Hen, which base on multiple cluster-on-a-chip processors. We prove the scalability of the design via micro benchmarks by taking the example of HermitCore---our prototype implementation of the new design.","PeriodicalId":262414,"journal":{"name":"Proceedings of the 6th International Workshop on Runtime and Operating Systems for Supercomputers","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":"{\"title\":\"HermitCore: A Unikernel for Extreme Scale Computing\",\"authors\":\"Stefan Lankes, Simon Pickartz, Jens Breitbart\",\"doi\":\"10.1145/2931088.2931093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We expect that the size and the complexity of future supercomputers will increase on their path to exascale systems and beyond. Therefore, system software has to adapt to the complexity of these systems for a simplification of the development of scalable applications. In this paper, we present a unikernel operating system design for HPC. It extends the multi-kernel approach while providing better programmability and scalability for hierarchical systems, such as HLRS' Hazel Hen, which base on multiple cluster-on-a-chip processors. We prove the scalability of the design via micro benchmarks by taking the example of HermitCore---our prototype implementation of the new design.\",\"PeriodicalId\":262414,\"journal\":{\"name\":\"Proceedings of the 6th International Workshop on Runtime and Operating Systems for Supercomputers\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 6th International Workshop on Runtime and Operating Systems for Supercomputers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2931088.2931093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Workshop on Runtime and Operating Systems for Supercomputers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2931088.2931093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
HermitCore: A Unikernel for Extreme Scale Computing
We expect that the size and the complexity of future supercomputers will increase on their path to exascale systems and beyond. Therefore, system software has to adapt to the complexity of these systems for a simplification of the development of scalable applications. In this paper, we present a unikernel operating system design for HPC. It extends the multi-kernel approach while providing better programmability and scalability for hierarchical systems, such as HLRS' Hazel Hen, which base on multiple cluster-on-a-chip processors. We prove the scalability of the design via micro benchmarks by taking the example of HermitCore---our prototype implementation of the new design.