食管癌病例数据挖掘分析

Yanning Cao, Xiaoshu Zhang, Jin Wang
{"title":"食管癌病例数据挖掘分析","authors":"Yanning Cao, Xiaoshu Zhang, Jin Wang","doi":"10.1504/ijcse.2020.10029386","DOIUrl":null,"url":null,"abstract":"We are in an era of digital medicine in which physicians can generate copious patient data, but tools to analyse these data are limited. Thus, we used case data from patients with oesophageal cancer from a medical institution, removed incomplete information, and quantified the textual data according to recommendations from the corresponding physicians. We used different classification algorithms to process the data, predict patient survival, and compare accuracies across algorithms. Our experimental results show that the BayesNet algorithm was highly accurate and precise, and, thus, may represent a promising data-mining tool.","PeriodicalId":340410,"journal":{"name":"Int. J. Comput. Sci. Eng.","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Case data-mining analysis for patients with oesophageal cancer\",\"authors\":\"Yanning Cao, Xiaoshu Zhang, Jin Wang\",\"doi\":\"10.1504/ijcse.2020.10029386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We are in an era of digital medicine in which physicians can generate copious patient data, but tools to analyse these data are limited. Thus, we used case data from patients with oesophageal cancer from a medical institution, removed incomplete information, and quantified the textual data according to recommendations from the corresponding physicians. We used different classification algorithms to process the data, predict patient survival, and compare accuracies across algorithms. Our experimental results show that the BayesNet algorithm was highly accurate and precise, and, thus, may represent a promising data-mining tool.\",\"PeriodicalId\":340410,\"journal\":{\"name\":\"Int. J. Comput. Sci. Eng.\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Comput. Sci. Eng.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijcse.2020.10029386\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Sci. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcse.2020.10029386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们正处于数字医学时代,医生可以生成大量的患者数据,但分析这些数据的工具有限。因此,我们使用来自医疗机构的食管癌患者的病例数据,删除不完整的信息,并根据相应医生的建议对文本数据进行量化。我们使用不同的分类算法来处理数据,预测患者的生存,并比较不同算法的准确性。实验结果表明,BayesNet算法具有较高的准确率和精确度,是一种很有前途的数据挖掘工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Case data-mining analysis for patients with oesophageal cancer
We are in an era of digital medicine in which physicians can generate copious patient data, but tools to analyse these data are limited. Thus, we used case data from patients with oesophageal cancer from a medical institution, removed incomplete information, and quantified the textual data according to recommendations from the corresponding physicians. We used different classification algorithms to process the data, predict patient survival, and compare accuracies across algorithms. Our experimental results show that the BayesNet algorithm was highly accurate and precise, and, thus, may represent a promising data-mining tool.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信