机器需要更好的日志记录:一种用于自动故障诊断的日志增强方法

Tong Jia, Ying Li, Chengbo Zhang, Wensheng Xia, Jie Jiang, Yuhong Liu
{"title":"机器需要更好的日志记录:一种用于自动故障诊断的日志增强方法","authors":"Tong Jia, Ying Li, Chengbo Zhang, Wensheng Xia, Jie Jiang, Yuhong Liu","doi":"10.1109/ISSREW.2018.00-22","DOIUrl":null,"url":null,"abstract":"When systems fail, log data is often the most important information source for fault diagnosis. However, the performance of automatic fault diagnosis is limited by the ad-hoc nature of logs. The key problem is that existing developer-written logs are designed for humans rather than machines to automatically detect system anomalies. To improve the quality of logs for fault diagnosis, we propose a novel log enhancement approach which automatically identifies logging points that reflect anomalous behavior during system fault. We evaluate our approach on three popular software systems AcmeAir, HDFS and TensorFlow. Results show that it can significantly improve fault diagnosis accuracy by 50% on average compared to the developers' manually placed logging points.","PeriodicalId":321448,"journal":{"name":"2018 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Machine Deserves Better Logging: A Log Enhancement Approach for Automatic Fault Diagnosis\",\"authors\":\"Tong Jia, Ying Li, Chengbo Zhang, Wensheng Xia, Jie Jiang, Yuhong Liu\",\"doi\":\"10.1109/ISSREW.2018.00-22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When systems fail, log data is often the most important information source for fault diagnosis. However, the performance of automatic fault diagnosis is limited by the ad-hoc nature of logs. The key problem is that existing developer-written logs are designed for humans rather than machines to automatically detect system anomalies. To improve the quality of logs for fault diagnosis, we propose a novel log enhancement approach which automatically identifies logging points that reflect anomalous behavior during system fault. We evaluate our approach on three popular software systems AcmeAir, HDFS and TensorFlow. Results show that it can significantly improve fault diagnosis accuracy by 50% on average compared to the developers' manually placed logging points.\",\"PeriodicalId\":321448,\"journal\":{\"name\":\"2018 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSREW.2018.00-22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSREW.2018.00-22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

当系统发生故障时,日志数据往往是故障诊断最重要的信息源。但是,日志的即时性限制了自动故障诊断的性能。关键问题是,现有的开发人员编写的日志是为人类而不是机器设计的,用于自动检测系统异常。为了提高故障诊断的日志质量,我们提出了一种新的日志增强方法,该方法可以自动识别系统故障过程中反映异常行为的日志点。我们在三个流行的软件系统AcmeAir、HDFS和TensorFlow上评估了我们的方法。结果表明,与开发人员手动设置的测井点相比,该方法可显著提高故障诊断准确率,平均提高50%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Deserves Better Logging: A Log Enhancement Approach for Automatic Fault Diagnosis
When systems fail, log data is often the most important information source for fault diagnosis. However, the performance of automatic fault diagnosis is limited by the ad-hoc nature of logs. The key problem is that existing developer-written logs are designed for humans rather than machines to automatically detect system anomalies. To improve the quality of logs for fault diagnosis, we propose a novel log enhancement approach which automatically identifies logging points that reflect anomalous behavior during system fault. We evaluate our approach on three popular software systems AcmeAir, HDFS and TensorFlow. Results show that it can significantly improve fault diagnosis accuracy by 50% on average compared to the developers' manually placed logging points.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信