学习用DOM特征提取Web内容

Nichita Utiu, Vlad-Sebastian Ionescu
{"title":"学习用DOM特征提取Web内容","authors":"Nichita Utiu, Vlad-Sebastian Ionescu","doi":"10.1109/ICCP.2018.8516632","DOIUrl":null,"url":null,"abstract":"Content extraction is the process that aims to separate the main content of web pages from the bulk of template and decorative components. We present a method of doing this which achieves competitive performance on the Cleaneval dataset and sets a new state-of-the-art with an F1 score of 0.96 on the Dragnet dataset. We accomplish this by modeling the task as a classification problem over HTML tags using features based on information from the DOM tree. Not only do we obtain a performance increase over current methods, but we do so with minimal feature engineering and without the extensive preprocessing steps of other methods.","PeriodicalId":259007,"journal":{"name":"2018 IEEE 14th International Conference on Intelligent Computer Communication and Processing (ICCP)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Learning Web Content Extraction with DOM Features\",\"authors\":\"Nichita Utiu, Vlad-Sebastian Ionescu\",\"doi\":\"10.1109/ICCP.2018.8516632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Content extraction is the process that aims to separate the main content of web pages from the bulk of template and decorative components. We present a method of doing this which achieves competitive performance on the Cleaneval dataset and sets a new state-of-the-art with an F1 score of 0.96 on the Dragnet dataset. We accomplish this by modeling the task as a classification problem over HTML tags using features based on information from the DOM tree. Not only do we obtain a performance increase over current methods, but we do so with minimal feature engineering and without the extensive preprocessing steps of other methods.\",\"PeriodicalId\":259007,\"journal\":{\"name\":\"2018 IEEE 14th International Conference on Intelligent Computer Communication and Processing (ICCP)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 14th International Conference on Intelligent Computer Communication and Processing (ICCP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCP.2018.8516632\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 14th International Conference on Intelligent Computer Communication and Processing (ICCP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCP.2018.8516632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

内容抽取是指将网页的主要内容从大量模板和装饰组件中分离出来的过程。我们提出了一种方法,该方法在Cleaneval数据集上实现了具有竞争力的性能,并在Dragnet数据集上设置了F1分数为0.96的新状态。我们通过使用基于DOM树信息的特性将任务建模为HTML标记上的分类问题来实现这一点。与现有方法相比,我们不仅获得了性能提升,而且只需要最少的特征工程,而不需要其他方法的大量预处理步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Web Content Extraction with DOM Features
Content extraction is the process that aims to separate the main content of web pages from the bulk of template and decorative components. We present a method of doing this which achieves competitive performance on the Cleaneval dataset and sets a new state-of-the-art with an F1 score of 0.96 on the Dragnet dataset. We accomplish this by modeling the task as a classification problem over HTML tags using features based on information from the DOM tree. Not only do we obtain a performance increase over current methods, but we do so with minimal feature engineering and without the extensive preprocessing steps of other methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信