R. Thiyagarajan, SujitNath Sinha, R. Ravichandran, K. Samuvel, G. Yadav, Ashokkumar Sigamani, Vikraman Subramani, Arunai Nambiraj
{"title":"呼吸门控放射治疗预处理患者特异性质量保证","authors":"R. Thiyagarajan, SujitNath Sinha, R. Ravichandran, K. Samuvel, G. Yadav, Ashokkumar Sigamani, Vikraman Subramani, Arunai Nambiraj","doi":"10.4103/0971-6203.177279","DOIUrl":null,"url":null,"abstract":"Organ motions during inter-fraction and intra-fraction radiotherapy introduce errors in dose delivery, irradiating excess of normal tissue, and missing target volume. Lung and heart involuntary motions cause above inaccuracies and gated dose delivery try to overcome above effects. Present work attempts a novel method to verify dynamic dose delivery using a four-dimensional (4D) phantom. Three patients with mobile target are coached to maintain regular and reproducible breathing pattern. Appropriate intensity projection image set generated from 4D-computed tomography (4D-CT) is used for target delineation. Intensity modulated radiotherapy plans were generated on selected phase using CT simulator (Siemens AG, Germany) in conjunction with \"Real-time position management\" (Varian, USA) to acquire 4D-CT images. Verification plans were generated for both ion chamber and Gafchromic (EBT) film image sets. Gated verification plans were delivered on the phantom moving with patient respiratory pattern. We developed a MATLAB-based software to generate maximum intensity projection, minimum intensity projections, and average intensity projections, also a program to convert patient breathing pattern to phantom compatible format. Dynamic thorax quality assurance (QA) phantom (Computerized Imaging Reference Systems type) is used to perform the patient specific QA, which holds an ion chamber and film to measure delivered radiation intensity. Exposed EBT films are analyzed and compared with treatment planning system calculated dose. The ion chamber measured dose shows good agreement with planned dose within ± 0.5% (0.203 ± 0.57%). Gamma value evaluated from EBT film shows passing rates 92–99% (96.63 ± 3.84%) for 3% dose and 3 mm distance criteria. Respiratory gated treatment delivery accuracy is found to be within clinically acceptable level.","PeriodicalId":143694,"journal":{"name":"Journal of Medical Physics / Association of Medical Physicists of India","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Respiratory gated radiotherapy-pretreatment patient specific quality assurance\",\"authors\":\"R. Thiyagarajan, SujitNath Sinha, R. Ravichandran, K. Samuvel, G. Yadav, Ashokkumar Sigamani, Vikraman Subramani, Arunai Nambiraj\",\"doi\":\"10.4103/0971-6203.177279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Organ motions during inter-fraction and intra-fraction radiotherapy introduce errors in dose delivery, irradiating excess of normal tissue, and missing target volume. Lung and heart involuntary motions cause above inaccuracies and gated dose delivery try to overcome above effects. Present work attempts a novel method to verify dynamic dose delivery using a four-dimensional (4D) phantom. Three patients with mobile target are coached to maintain regular and reproducible breathing pattern. Appropriate intensity projection image set generated from 4D-computed tomography (4D-CT) is used for target delineation. Intensity modulated radiotherapy plans were generated on selected phase using CT simulator (Siemens AG, Germany) in conjunction with \\\"Real-time position management\\\" (Varian, USA) to acquire 4D-CT images. Verification plans were generated for both ion chamber and Gafchromic (EBT) film image sets. Gated verification plans were delivered on the phantom moving with patient respiratory pattern. We developed a MATLAB-based software to generate maximum intensity projection, minimum intensity projections, and average intensity projections, also a program to convert patient breathing pattern to phantom compatible format. Dynamic thorax quality assurance (QA) phantom (Computerized Imaging Reference Systems type) is used to perform the patient specific QA, which holds an ion chamber and film to measure delivered radiation intensity. Exposed EBT films are analyzed and compared with treatment planning system calculated dose. The ion chamber measured dose shows good agreement with planned dose within ± 0.5% (0.203 ± 0.57%). Gamma value evaluated from EBT film shows passing rates 92–99% (96.63 ± 3.84%) for 3% dose and 3 mm distance criteria. Respiratory gated treatment delivery accuracy is found to be within clinically acceptable level.\",\"PeriodicalId\":143694,\"journal\":{\"name\":\"Journal of Medical Physics / Association of Medical Physicists of India\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Physics / Association of Medical Physicists of India\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/0971-6203.177279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Physics / Association of Medical Physicists of India","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/0971-6203.177279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Respiratory gated radiotherapy-pretreatment patient specific quality assurance
Organ motions during inter-fraction and intra-fraction radiotherapy introduce errors in dose delivery, irradiating excess of normal tissue, and missing target volume. Lung and heart involuntary motions cause above inaccuracies and gated dose delivery try to overcome above effects. Present work attempts a novel method to verify dynamic dose delivery using a four-dimensional (4D) phantom. Three patients with mobile target are coached to maintain regular and reproducible breathing pattern. Appropriate intensity projection image set generated from 4D-computed tomography (4D-CT) is used for target delineation. Intensity modulated radiotherapy plans were generated on selected phase using CT simulator (Siemens AG, Germany) in conjunction with "Real-time position management" (Varian, USA) to acquire 4D-CT images. Verification plans were generated for both ion chamber and Gafchromic (EBT) film image sets. Gated verification plans were delivered on the phantom moving with patient respiratory pattern. We developed a MATLAB-based software to generate maximum intensity projection, minimum intensity projections, and average intensity projections, also a program to convert patient breathing pattern to phantom compatible format. Dynamic thorax quality assurance (QA) phantom (Computerized Imaging Reference Systems type) is used to perform the patient specific QA, which holds an ion chamber and film to measure delivered radiation intensity. Exposed EBT films are analyzed and compared with treatment planning system calculated dose. The ion chamber measured dose shows good agreement with planned dose within ± 0.5% (0.203 ± 0.57%). Gamma value evaluated from EBT film shows passing rates 92–99% (96.63 ± 3.84%) for 3% dose and 3 mm distance criteria. Respiratory gated treatment delivery accuracy is found to be within clinically acceptable level.