基于两阶段遗传算法优化的住宅负荷友好型需求侧管理技术

Md Shanian Moed, Sazid Mahmud, T. Aziz, Syed Abdullah-Ai-Nahid, Tafsir Ahmed Khan
{"title":"基于两阶段遗传算法优化的住宅负荷友好型需求侧管理技术","authors":"Md Shanian Moed, Sazid Mahmud, T. Aziz, Syed Abdullah-Ai-Nahid, Tafsir Ahmed Khan","doi":"10.1109/GEC55014.2022.9986733","DOIUrl":null,"url":null,"abstract":"Demand side management (DSM) ensures dynamic energy management of the utility by enabling customers to make early decisions about their daily energy usage. In DSM, the objective is to reduce the peak to average ratio (PAR) value by flattening t he load curve top rovide exemptions f rom enhancing generation transmission units by the utility. In this paper, a Genetic Algorithm (GA) optimization-based DSM technique for residential users is proposed to attain a flattened daily load curve. It incorporates two-stage optimization by GA in determining the near-optimum load data set to be allocated in each slot by shifting some non-essential loads to a lower-demand time slot. Consumer comfort is prioritized while shifting the loads from a time slot to a new slot to attain lower PAR. The simulation outcomes from the test case scenario show that the PAR is reduced by about 40% by applying the proposed DSM.","PeriodicalId":280565,"journal":{"name":"2022 Global Energy Conference (GEC)","volume":"149 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A consumer-friendly demand side management technique for residential loads supported by two stage Genetic Algorithm-based optimization\",\"authors\":\"Md Shanian Moed, Sazid Mahmud, T. Aziz, Syed Abdullah-Ai-Nahid, Tafsir Ahmed Khan\",\"doi\":\"10.1109/GEC55014.2022.9986733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Demand side management (DSM) ensures dynamic energy management of the utility by enabling customers to make early decisions about their daily energy usage. In DSM, the objective is to reduce the peak to average ratio (PAR) value by flattening t he load curve top rovide exemptions f rom enhancing generation transmission units by the utility. In this paper, a Genetic Algorithm (GA) optimization-based DSM technique for residential users is proposed to attain a flattened daily load curve. It incorporates two-stage optimization by GA in determining the near-optimum load data set to be allocated in each slot by shifting some non-essential loads to a lower-demand time slot. Consumer comfort is prioritized while shifting the loads from a time slot to a new slot to attain lower PAR. The simulation outcomes from the test case scenario show that the PAR is reduced by about 40% by applying the proposed DSM.\",\"PeriodicalId\":280565,\"journal\":{\"name\":\"2022 Global Energy Conference (GEC)\",\"volume\":\"149 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Global Energy Conference (GEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GEC55014.2022.9986733\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Global Energy Conference (GEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GEC55014.2022.9986733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

需求侧管理(DSM)通过使客户能够及早决定他们的日常能源使用情况,确保公用事业的动态能源管理。在电力需求侧管理中,目标是通过使负荷曲线顶部扁平化来降低峰值平均比(PAR)值,从而使公用事业公司免于加强发电传输单元。本文提出了一种基于遗传算法优化的住宅用户需求侧管理技术,以获得平坦化的日负荷曲线。它结合了遗传算法的两阶段优化,通过将一些非必要的负载转移到需求较低的时隙,确定在每个时隙分配的接近最优负载数据集。在将负荷从一个时隙转移到另一个时隙以获得较低的PAR时,消费者的舒适度是优先考虑的。测试用例场景的模拟结果表明,通过应用拟议的DSM, PAR降低了约40%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A consumer-friendly demand side management technique for residential loads supported by two stage Genetic Algorithm-based optimization
Demand side management (DSM) ensures dynamic energy management of the utility by enabling customers to make early decisions about their daily energy usage. In DSM, the objective is to reduce the peak to average ratio (PAR) value by flattening t he load curve top rovide exemptions f rom enhancing generation transmission units by the utility. In this paper, a Genetic Algorithm (GA) optimization-based DSM technique for residential users is proposed to attain a flattened daily load curve. It incorporates two-stage optimization by GA in determining the near-optimum load data set to be allocated in each slot by shifting some non-essential loads to a lower-demand time slot. Consumer comfort is prioritized while shifting the loads from a time slot to a new slot to attain lower PAR. The simulation outcomes from the test case scenario show that the PAR is reduced by about 40% by applying the proposed DSM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信