关于公式j(M)+α(M)=2n在环上n (dn)和P*

Wu Quan-shui
{"title":"关于公式j(M)+α(M)=2n在环上n (dn)和P*","authors":"Wu Quan-shui","doi":"10.1360/YA1993-36-12-1409","DOIUrl":null,"url":null,"abstract":"In the study of the holonomic modules over D n ( D n ) and ()p, it is claimed and used that gr ( D n )(gr( D n ) and gr (()p) are regular Noetherian rings with pure dimension 2n, where D n is the stalk of the sheaf of differential operators withholomorphic coefficients, and ()p is the stalk of the sheaf () of microlocal differential operators. This property is used to prove j(M)+d(M)=2n for any finitely generated modules over D n ( D n ) and ()p by using the generalized Roos Theorem. In [1], it was proved that gr( D n )(gr( D n )) and gr(()p) do not have pure dimension, so we cannot apply the generalized Roos Theorem directly. In this paper, we reestablish the formula j ( M )+ d ( M )=2 n for any finitely generated modules over D n ( D n ) and()p.","PeriodicalId":256661,"journal":{"name":"Science in China Series A-Mathematics, Physics, Astronomy & Technological Science","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Formula j(M)+α(M)=2n Over the Rings D n ( D n ) and P*\",\"authors\":\"Wu Quan-shui\",\"doi\":\"10.1360/YA1993-36-12-1409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the study of the holonomic modules over D n ( D n ) and ()p, it is claimed and used that gr ( D n )(gr( D n ) and gr (()p) are regular Noetherian rings with pure dimension 2n, where D n is the stalk of the sheaf of differential operators withholomorphic coefficients, and ()p is the stalk of the sheaf () of microlocal differential operators. This property is used to prove j(M)+d(M)=2n for any finitely generated modules over D n ( D n ) and ()p by using the generalized Roos Theorem. In [1], it was proved that gr( D n )(gr( D n )) and gr(()p) do not have pure dimension, so we cannot apply the generalized Roos Theorem directly. In this paper, we reestablish the formula j ( M )+ d ( M )=2 n for any finitely generated modules over D n ( D n ) and()p.\",\"PeriodicalId\":256661,\"journal\":{\"name\":\"Science in China Series A-Mathematics, Physics, Astronomy & Technological Science\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science in China Series A-Mathematics, Physics, Astronomy & Technological Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1360/YA1993-36-12-1409\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science in China Series A-Mathematics, Physics, Astronomy & Technological Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1360/YA1993-36-12-1409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在nd (dn)和()p上的完整模的研究中,提出并使用了gr(dn)(gr(dn)和gr(()p)是纯维数2n的正则noether环,其中dn是带全纯系数的微分算子群的茎,p是微局部微分算子群的茎。利用这一性质,利用广义Roos定理证明了n (n)和()p上任意有限生成模j(M)+d(M)=2n。在[1]中,证明了gr(dn)(gr(dn))和gr(()p)不具有纯维数,因此不能直接应用广义Roos定理。在本文中,我们重新建立了公式j (M)+ d(M)= 2n对任意有限生成模在d(n)和()p上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Formula j(M)+α(M)=2n Over the Rings D n ( D n ) and P*
In the study of the holonomic modules over D n ( D n ) and ()p, it is claimed and used that gr ( D n )(gr( D n ) and gr (()p) are regular Noetherian rings with pure dimension 2n, where D n is the stalk of the sheaf of differential operators withholomorphic coefficients, and ()p is the stalk of the sheaf () of microlocal differential operators. This property is used to prove j(M)+d(M)=2n for any finitely generated modules over D n ( D n ) and ()p by using the generalized Roos Theorem. In [1], it was proved that gr( D n )(gr( D n )) and gr(()p) do not have pure dimension, so we cannot apply the generalized Roos Theorem directly. In this paper, we reestablish the formula j ( M )+ d ( M )=2 n for any finitely generated modules over D n ( D n ) and()p.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信