{"title":"有界对称区域的Bergmann-Shilov边界","authors":"M. Mackey, P. Mellon","doi":"10.3318/PRIA.2021.121.03","DOIUrl":null,"url":null,"abstract":". We show that there are many sets in the boundary of a bounded symmetric domain that determine the values and norm of holomorphic functions on the domain having continuous extensions to the boundary. We provide an analogue of the Bergmann-Shilov boundary for finite rank JB ∗ -triples.","PeriodicalId":434988,"journal":{"name":"Mathematical Proceedings of the Royal Irish Academy","volume":"2015 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Bergmann-Shilov boundary of a Bounded Symmetric\\n Domain\",\"authors\":\"M. Mackey, P. Mellon\",\"doi\":\"10.3318/PRIA.2021.121.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We show that there are many sets in the boundary of a bounded symmetric domain that determine the values and norm of holomorphic functions on the domain having continuous extensions to the boundary. We provide an analogue of the Bergmann-Shilov boundary for finite rank JB ∗ -triples.\",\"PeriodicalId\":434988,\"journal\":{\"name\":\"Mathematical Proceedings of the Royal Irish Academy\",\"volume\":\"2015 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Proceedings of the Royal Irish Academy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3318/PRIA.2021.121.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Royal Irish Academy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3318/PRIA.2021.121.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Bergmann-Shilov boundary of a Bounded Symmetric
Domain
. We show that there are many sets in the boundary of a bounded symmetric domain that determine the values and norm of holomorphic functions on the domain having continuous extensions to the boundary. We provide an analogue of the Bergmann-Shilov boundary for finite rank JB ∗ -triples.