Web服务聚类中主题建模与词嵌入方法的比较研究

N. Agarwal, Geeta Sikka, L. Awasthi
{"title":"Web服务聚类中主题建模与词嵌入方法的比较研究","authors":"N. Agarwal, Geeta Sikka, L. Awasthi","doi":"10.1145/3474124.3474169","DOIUrl":null,"url":null,"abstract":"Vector space representation of web services plays a prominent role in enhancing the performance of different web service-based processes like clustering, recommendation, ranking, discovery, etc. Generally, Term Frequency - Inverse Document Frequency (TF-IDF) and topic modeling methods are widely used for service representation. In recent years, word embedding techniques have attracted researchers a lot because they can map services or documents based on semantic similarity. This paper provides a comparative analysis of two topic modeling techniques, i.e., Latent Dirichlet Allocation (LDA) and Gibbs Sampling algorithm for Dirichlet Multinomial Mixture (GSDMM) & two word embedding techniques, i.e., word2vec and fastText. These topic modeling and word embedding techniques are applied to a dataset of web service documents for vector space representation. K-Means clustering is used to analyze the performance, and results are evaluated based on standard evaluation criteria. Results demonstrate that word2vec model outperforms other techniques and provides a satisfactory improvement on clustering.","PeriodicalId":144611,"journal":{"name":"2021 Thirteenth International Conference on Contemporary Computing (IC3-2021)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Study of Topic Modeling and Word Embedding Approaches for Web Service Clustering\",\"authors\":\"N. Agarwal, Geeta Sikka, L. Awasthi\",\"doi\":\"10.1145/3474124.3474169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vector space representation of web services plays a prominent role in enhancing the performance of different web service-based processes like clustering, recommendation, ranking, discovery, etc. Generally, Term Frequency - Inverse Document Frequency (TF-IDF) and topic modeling methods are widely used for service representation. In recent years, word embedding techniques have attracted researchers a lot because they can map services or documents based on semantic similarity. This paper provides a comparative analysis of two topic modeling techniques, i.e., Latent Dirichlet Allocation (LDA) and Gibbs Sampling algorithm for Dirichlet Multinomial Mixture (GSDMM) & two word embedding techniques, i.e., word2vec and fastText. These topic modeling and word embedding techniques are applied to a dataset of web service documents for vector space representation. K-Means clustering is used to analyze the performance, and results are evaluated based on standard evaluation criteria. Results demonstrate that word2vec model outperforms other techniques and provides a satisfactory improvement on clustering.\",\"PeriodicalId\":144611,\"journal\":{\"name\":\"2021 Thirteenth International Conference on Contemporary Computing (IC3-2021)\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Thirteenth International Conference on Contemporary Computing (IC3-2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3474124.3474169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Thirteenth International Conference on Contemporary Computing (IC3-2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3474124.3474169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

web服务的向量空间表示在增强不同的基于web服务的过程(如聚类、推荐、排名、发现等)的性能方面起着重要作用。通常,术语频率-逆文档频率(TF-IDF)和主题建模方法被广泛用于服务表示。近年来,词嵌入技术由于能够基于语义相似度对服务或文档进行映射而引起了研究人员的广泛关注。本文对Dirichlet多项式混合(GSDMM)的Latent Dirichlet Allocation (LDA)和Gibbs Sampling算法两种主题建模技术和word2vec和fastText两种词嵌入技术进行了比较分析。将这些主题建模和词嵌入技术应用于web服务文档数据集,用于向量空间表示。使用K-Means聚类分析性能,并根据标准评价标准对结果进行评价。结果表明,word2vec模型优于其他技术,并在聚类方面提供了令人满意的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative Study of Topic Modeling and Word Embedding Approaches for Web Service Clustering
Vector space representation of web services plays a prominent role in enhancing the performance of different web service-based processes like clustering, recommendation, ranking, discovery, etc. Generally, Term Frequency - Inverse Document Frequency (TF-IDF) and topic modeling methods are widely used for service representation. In recent years, word embedding techniques have attracted researchers a lot because they can map services or documents based on semantic similarity. This paper provides a comparative analysis of two topic modeling techniques, i.e., Latent Dirichlet Allocation (LDA) and Gibbs Sampling algorithm for Dirichlet Multinomial Mixture (GSDMM) & two word embedding techniques, i.e., word2vec and fastText. These topic modeling and word embedding techniques are applied to a dataset of web service documents for vector space representation. K-Means clustering is used to analyze the performance, and results are evaluated based on standard evaluation criteria. Results demonstrate that word2vec model outperforms other techniques and provides a satisfactory improvement on clustering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信