库普曼不变子空间的快速辨识:并行对称子空间分解

Masih Haseli, J. Cortés
{"title":"库普曼不变子空间的快速辨识:并行对称子空间分解","authors":"Masih Haseli, J. Cortés","doi":"10.23919/ACC45564.2020.9147223","DOIUrl":null,"url":null,"abstract":"This paper presents a parallel data-driven method to identify finite-dimensional subspaces that are invariant under the Koopman operator describing a dynamical system. Our approach builds on Symmetric Subspace Decomposition (SSD), which is a centralized scheme to find Koopman-invariant subspaces and Koopman eigenfunctions. Given a dictionary of functions, a collection of processors communicating through a strongly connected time-invariant directed graph, and a set of data snapshots gathered from the dynamical system, our approach distributes the data snapshots among the processors and initializes each processor with the original dictionary. Then, at each iteration, processors prune their dictionary by using the information received from their neighbors and applying the SSD method on the pruned dictionary with their local data. We prove that the algorithm terminates in a finite number of iterations and that the processors, upon termination, reach consensus on the maximal Koopman-invariant subspace in the span of the dictionary (and is therefore equivalent to SSD). A simulation example shows significant gains in time complexity by the proposed method over SSD.","PeriodicalId":288450,"journal":{"name":"2020 American Control Conference (ACC)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Fast Identification of Koopman-Invariant Subspaces: Parallel Symmetric Subspace Decomposition\",\"authors\":\"Masih Haseli, J. Cortés\",\"doi\":\"10.23919/ACC45564.2020.9147223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a parallel data-driven method to identify finite-dimensional subspaces that are invariant under the Koopman operator describing a dynamical system. Our approach builds on Symmetric Subspace Decomposition (SSD), which is a centralized scheme to find Koopman-invariant subspaces and Koopman eigenfunctions. Given a dictionary of functions, a collection of processors communicating through a strongly connected time-invariant directed graph, and a set of data snapshots gathered from the dynamical system, our approach distributes the data snapshots among the processors and initializes each processor with the original dictionary. Then, at each iteration, processors prune their dictionary by using the information received from their neighbors and applying the SSD method on the pruned dictionary with their local data. We prove that the algorithm terminates in a finite number of iterations and that the processors, upon termination, reach consensus on the maximal Koopman-invariant subspace in the span of the dictionary (and is therefore equivalent to SSD). A simulation example shows significant gains in time complexity by the proposed method over SSD.\",\"PeriodicalId\":288450,\"journal\":{\"name\":\"2020 American Control Conference (ACC)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ACC45564.2020.9147223\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC45564.2020.9147223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种并行数据驱动的方法来识别在Koopman算子下描述动力系统的有限维子空间是不变的。我们的方法建立在对称子空间分解(SSD)的基础上,这是一种寻找库普曼不变子空间和库普曼特征函数的集中方案。给定函数字典,通过强连接时不变有向图通信的处理器集合,以及从动态系统收集的一组数据快照,我们的方法在处理器之间分配数据快照,并使用原始字典初始化每个处理器。然后,在每次迭代中,处理器使用从邻居那里接收到的信息对它们的字典进行修剪,并使用本地数据对修剪后的字典应用SSD方法。我们证明了该算法在有限次迭代中终止,并且处理器在终止时对字典范围内的最大koopman不变子空间达成共识(因此等同于SSD)。仿真实例表明,与SSD相比,该方法在时间复杂度方面有显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast Identification of Koopman-Invariant Subspaces: Parallel Symmetric Subspace Decomposition
This paper presents a parallel data-driven method to identify finite-dimensional subspaces that are invariant under the Koopman operator describing a dynamical system. Our approach builds on Symmetric Subspace Decomposition (SSD), which is a centralized scheme to find Koopman-invariant subspaces and Koopman eigenfunctions. Given a dictionary of functions, a collection of processors communicating through a strongly connected time-invariant directed graph, and a set of data snapshots gathered from the dynamical system, our approach distributes the data snapshots among the processors and initializes each processor with the original dictionary. Then, at each iteration, processors prune their dictionary by using the information received from their neighbors and applying the SSD method on the pruned dictionary with their local data. We prove that the algorithm terminates in a finite number of iterations and that the processors, upon termination, reach consensus on the maximal Koopman-invariant subspace in the span of the dictionary (and is therefore equivalent to SSD). A simulation example shows significant gains in time complexity by the proposed method over SSD.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信