摩尔填充空间薄壁结构的能量吸收与可恢复性

Changlang Wu, V. Nguyen-Van, Phuong Tran
{"title":"摩尔填充空间薄壁结构的能量吸收与可恢复性","authors":"Changlang Wu, V. Nguyen-Van, Phuong Tran","doi":"10.36922/msam.53","DOIUrl":null,"url":null,"abstract":"This paper proposes novel thin-walled structures inspired by Moore space-filling curves. Nine designs, featuring three fractal hierarchies (1st, 2nd, and 3rd orders) with three different relative densities (20%, 30%, and 40%), were used as cross-sectional configurations of the thin-walled structures. Specimens were manufactured using a material extrusion additive manufacturing technique, fused filament fabrication, with a carbon fiber-reinforced composite. Quasi-static compression tests from in-plane direction were conducted to investigate the influences of fractal hierarchy and relative density on the energy absorption capacity. Finite element models were developed to compare with the experiments and to further explore the 4th order structures. A certain level of compliance and snap-in instability were observed in all the structures. These properties show great potential for such thin-walled structures to absorb more energy by enduring large strain. Among them, the 2nd order structures exhibited the best energy absorption capacity. Furthermore, loading and unloading compression tests were performed on the 2nd and 3rd order structures (relative density of 20%) to evaluate their resilience toward displacement and damages. The residual strain and dissipated energy ratio demonstrated that the 2nd order structure outperformed the 3rd order structure owing to its less compliant feature. The integration of Moore curves with thin-walled structures contributes to great compliance and snap-in instability, offering a new approach to designing lightweight energy absorption structures.","PeriodicalId":422581,"journal":{"name":"Materials Science in Additive Manufacturing","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Energy absorption and recoverability of Moore space-filling thin-walled structures\",\"authors\":\"Changlang Wu, V. Nguyen-Van, Phuong Tran\",\"doi\":\"10.36922/msam.53\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes novel thin-walled structures inspired by Moore space-filling curves. Nine designs, featuring three fractal hierarchies (1st, 2nd, and 3rd orders) with three different relative densities (20%, 30%, and 40%), were used as cross-sectional configurations of the thin-walled structures. Specimens were manufactured using a material extrusion additive manufacturing technique, fused filament fabrication, with a carbon fiber-reinforced composite. Quasi-static compression tests from in-plane direction were conducted to investigate the influences of fractal hierarchy and relative density on the energy absorption capacity. Finite element models were developed to compare with the experiments and to further explore the 4th order structures. A certain level of compliance and snap-in instability were observed in all the structures. These properties show great potential for such thin-walled structures to absorb more energy by enduring large strain. Among them, the 2nd order structures exhibited the best energy absorption capacity. Furthermore, loading and unloading compression tests were performed on the 2nd and 3rd order structures (relative density of 20%) to evaluate their resilience toward displacement and damages. The residual strain and dissipated energy ratio demonstrated that the 2nd order structure outperformed the 3rd order structure owing to its less compliant feature. The integration of Moore curves with thin-walled structures contributes to great compliance and snap-in instability, offering a new approach to designing lightweight energy absorption structures.\",\"PeriodicalId\":422581,\"journal\":{\"name\":\"Materials Science in Additive Manufacturing\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science in Additive Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36922/msam.53\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science in Additive Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36922/msam.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了受摩尔空间填充曲线启发的新型薄壁结构。9个设计,具有3个分形层次(1、2、3阶)和3种不同的相对密度(20%、30%和40%),作为薄壁结构的截面配置。样品是使用材料挤压增材制造技术制造的,熔融长丝制造,碳纤维增强复合材料。通过面内方向的准静态压缩试验,研究了分形层次和相对密度对吸能能力的影响。建立了有限元模型,与实验结果进行了比较,并对四阶结构进行了进一步研究。在所有结构中都观察到一定程度的顺应性和snap-in不稳定性。这些特性显示了这种薄壁结构通过承受大应变来吸收更多能量的巨大潜力。其中,二阶结构的吸能能力最好。此外,对二级和三级结构(相对密度为20%)进行了加载和卸载压缩试验,以评估其对位移和损伤的恢复能力。残余应变和耗散能比表明,二阶结构的柔顺性较弱,其性能优于三阶结构。摩尔曲线与薄壁结构的结合具有良好的顺应性和卡入不稳定性,为轻量化吸能结构的设计提供了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy absorption and recoverability of Moore space-filling thin-walled structures
This paper proposes novel thin-walled structures inspired by Moore space-filling curves. Nine designs, featuring three fractal hierarchies (1st, 2nd, and 3rd orders) with three different relative densities (20%, 30%, and 40%), were used as cross-sectional configurations of the thin-walled structures. Specimens were manufactured using a material extrusion additive manufacturing technique, fused filament fabrication, with a carbon fiber-reinforced composite. Quasi-static compression tests from in-plane direction were conducted to investigate the influences of fractal hierarchy and relative density on the energy absorption capacity. Finite element models were developed to compare with the experiments and to further explore the 4th order structures. A certain level of compliance and snap-in instability were observed in all the structures. These properties show great potential for such thin-walled structures to absorb more energy by enduring large strain. Among them, the 2nd order structures exhibited the best energy absorption capacity. Furthermore, loading and unloading compression tests were performed on the 2nd and 3rd order structures (relative density of 20%) to evaluate their resilience toward displacement and damages. The residual strain and dissipated energy ratio demonstrated that the 2nd order structure outperformed the 3rd order structure owing to its less compliant feature. The integration of Moore curves with thin-walled structures contributes to great compliance and snap-in instability, offering a new approach to designing lightweight energy absorption structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信