基于最小二乘支持向量机和粒子群优化的微阵列数据特征选择

E. Tang, P. N. Suganthan, X. Yao
{"title":"基于最小二乘支持向量机和粒子群优化的微阵列数据特征选择","authors":"E. Tang, P. N. Suganthan, X. Yao","doi":"10.1109/CIBCB.2005.1594892","DOIUrl":null,"url":null,"abstract":"Feature selection is an important preprocessing technique for many pattern recognition problems. When the number of features is very large while the number of samples is relatively small as in the micro-array data analysis, feature selection is even more important. This paper proposes a novel feature selection method to perform gene selection from DNA microarray data. The method originates from the least squares support vector machine (LSSVM). The particle swarm optimization (PSO) algorithm is also employed to perform optimization. Experimental results clearly demonstrate good and stable performance of the proposed method.","PeriodicalId":330810,"journal":{"name":"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"Feature Selection for Microarray Data Using Least Squares SVM and Particle Swarm Optimization\",\"authors\":\"E. Tang, P. N. Suganthan, X. Yao\",\"doi\":\"10.1109/CIBCB.2005.1594892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Feature selection is an important preprocessing technique for many pattern recognition problems. When the number of features is very large while the number of samples is relatively small as in the micro-array data analysis, feature selection is even more important. This paper proposes a novel feature selection method to perform gene selection from DNA microarray data. The method originates from the least squares support vector machine (LSSVM). The particle swarm optimization (PSO) algorithm is also employed to perform optimization. Experimental results clearly demonstrate good and stable performance of the proposed method.\",\"PeriodicalId\":330810,\"journal\":{\"name\":\"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIBCB.2005.1594892\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2005.1594892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

摘要

特征选择是许多模式识别问题的重要预处理技术。在微阵列数据分析中,当特征数量非常多而样本数量相对较少时,特征选择就显得尤为重要。本文提出了一种新的特征选择方法,从DNA微阵列数据中进行基因选择。该方法来源于最小二乘支持向量机(LSSVM)。采用粒子群优化(PSO)算法进行优化。实验结果表明,该方法具有良好的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature Selection for Microarray Data Using Least Squares SVM and Particle Swarm Optimization
Feature selection is an important preprocessing technique for many pattern recognition problems. When the number of features is very large while the number of samples is relatively small as in the micro-array data analysis, feature selection is even more important. This paper proposes a novel feature selection method to perform gene selection from DNA microarray data. The method originates from the least squares support vector machine (LSSVM). The particle swarm optimization (PSO) algorithm is also employed to perform optimization. Experimental results clearly demonstrate good and stable performance of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信