显著性视觉注意检测中多线索的自适应局部语境抑制

Yiqun Hu, D. Rajan, L. Chia
{"title":"显著性视觉注意检测中多线索的自适应局部语境抑制","authors":"Yiqun Hu, D. Rajan, L. Chia","doi":"10.1109/ICME.2005.1521431","DOIUrl":null,"url":null,"abstract":"Visual attention is obtained through determination of contrasts of low level features or attention cues like intensity, color etc. We propose a new texture attention cue that is shown to be more effective for images where the salient object regions and background have similar visual characteristics. Current visual attention models do not consider local contextual information to highlight attention regions. We also propose a feature combination strategy by suppressing saliency based on context information that is effective in determining the true attention region. We compare our approach with other visual attention models using a novel average discrimination ratio measure.","PeriodicalId":244360,"journal":{"name":"2005 IEEE International Conference on Multimedia and Expo","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"Adaptive local context suppression of multiple cues for salient visual attention detection\",\"authors\":\"Yiqun Hu, D. Rajan, L. Chia\",\"doi\":\"10.1109/ICME.2005.1521431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visual attention is obtained through determination of contrasts of low level features or attention cues like intensity, color etc. We propose a new texture attention cue that is shown to be more effective for images where the salient object regions and background have similar visual characteristics. Current visual attention models do not consider local contextual information to highlight attention regions. We also propose a feature combination strategy by suppressing saliency based on context information that is effective in determining the true attention region. We compare our approach with other visual attention models using a novel average discrimination ratio measure.\",\"PeriodicalId\":244360,\"journal\":{\"name\":\"2005 IEEE International Conference on Multimedia and Expo\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 IEEE International Conference on Multimedia and Expo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICME.2005.1521431\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE International Conference on Multimedia and Expo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2005.1521431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

摘要

视觉注意是通过确定低水平特征或注意线索(如强度、颜色等)的对比来获得的。我们提出了一种新的纹理注意线索,该线索被证明对显著物体区域和背景具有相似视觉特征的图像更有效。当前的视觉注意模型没有考虑局部上下文信息来突出注意区域。我们还提出了一种基于上下文信息的特征组合策略,该策略通过抑制显著性来有效地确定真正的注意区域。我们将我们的方法与其他视觉注意模型进行了比较,使用了一种新的平均辨别比测量方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive local context suppression of multiple cues for salient visual attention detection
Visual attention is obtained through determination of contrasts of low level features or attention cues like intensity, color etc. We propose a new texture attention cue that is shown to be more effective for images where the salient object regions and background have similar visual characteristics. Current visual attention models do not consider local contextual information to highlight attention regions. We also propose a feature combination strategy by suppressing saliency based on context information that is effective in determining the true attention region. We compare our approach with other visual attention models using a novel average discrimination ratio measure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信