…随着hit think形状变化的特别工作组PC用CPU冷却热传导特性的研究。

Jun-Kyu Yoon
{"title":"…随着hit think形状变化的特别工作组PC用CPU冷却热传导特性的研究。","authors":"Jun-Kyu Yoon","doi":"10.17958/ksmt.22.1.202002.99","DOIUrl":null,"url":null,"abstract":"The purpose of this study is to analyze the temperature and heat resistance distribution, which is a criterion for evaluating the cooling performance, by using computer simulation of the cooling system combined with the CPU of the individual highest heat generation section, and use it as important data for the heat sink design. Using a single material of Al 6063-T5, which is an integral part of the desktop, fan and heat sink, fins and base, the analysis was carried out with various fin numbers, thicknesses, pitches and shapes of heat sinks. Ambient temperature, 25°C, heat source, 130W and cooling fan speed, 2500 rpm (50CFM) were used as boundary conditions, and heat transfer characteristics regarding temperature distribution and heat resistance were investigated using ANSYS Icepak. As a result, it has been found that as the number of fins of heat sink increases, the heat dissipation area increases to decrease heat resistance, and as the distance between each fin decreases, the ventilation resistance increases to decrease the flow intensity of the cooling air in contact with the heat dissipation area. The sunburst array also exhibits better heat transfer characteristics by obtaining a lower distribution of heat resistance with a cooling effect of about 10°C than the one-way basic array.","PeriodicalId":168106,"journal":{"name":"Journal of the Korean Society of Mechanical Technology","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"히트싱크의 형상변화에 따른 테스크탑 PC용 CPU냉각의 열전달특성에 관한 연구\",\"authors\":\"Jun-Kyu Yoon\",\"doi\":\"10.17958/ksmt.22.1.202002.99\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this study is to analyze the temperature and heat resistance distribution, which is a criterion for evaluating the cooling performance, by using computer simulation of the cooling system combined with the CPU of the individual highest heat generation section, and use it as important data for the heat sink design. Using a single material of Al 6063-T5, which is an integral part of the desktop, fan and heat sink, fins and base, the analysis was carried out with various fin numbers, thicknesses, pitches and shapes of heat sinks. Ambient temperature, 25°C, heat source, 130W and cooling fan speed, 2500 rpm (50CFM) were used as boundary conditions, and heat transfer characteristics regarding temperature distribution and heat resistance were investigated using ANSYS Icepak. As a result, it has been found that as the number of fins of heat sink increases, the heat dissipation area increases to decrease heat resistance, and as the distance between each fin decreases, the ventilation resistance increases to decrease the flow intensity of the cooling air in contact with the heat dissipation area. The sunburst array also exhibits better heat transfer characteristics by obtaining a lower distribution of heat resistance with a cooling effect of about 10°C than the one-way basic array.\",\"PeriodicalId\":168106,\"journal\":{\"name\":\"Journal of the Korean Society of Mechanical Technology\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korean Society of Mechanical Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17958/ksmt.22.1.202002.99\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Society of Mechanical Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17958/ksmt.22.1.202002.99","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是通过计算机模拟单个最高发热量截面的冷却系统与CPU的结合,分析其温度和热阻分布,这是评估散热性能的一个标准,并将其作为散热器设计的重要数据。采用Al 6063-T5单一材料,即桌面、风扇和散热器、翅片和底座的组成部分,对散热器的不同翅片数量、厚度、间距和形状进行了分析。以环境温度为25℃,热源为130W,冷却风扇转速为2500 rpm (50CFM)为边界条件,利用ANSYS Icepak软件对温度分布和热阻传热特性进行了研究。结果发现,随着散热器翅片数量的增加,散热面积的增大以减小热阻,随着各翅片之间距离的减小,通风阻力的增大以减小与散热面积接触的冷却空气的流动强度。与单向基本阵列相比,爆日阵列的热阻分布更低,冷却效果约为10°C,具有更好的传热特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
히트싱크의 형상변화에 따른 테스크탑 PC용 CPU냉각의 열전달특성에 관한 연구
The purpose of this study is to analyze the temperature and heat resistance distribution, which is a criterion for evaluating the cooling performance, by using computer simulation of the cooling system combined with the CPU of the individual highest heat generation section, and use it as important data for the heat sink design. Using a single material of Al 6063-T5, which is an integral part of the desktop, fan and heat sink, fins and base, the analysis was carried out with various fin numbers, thicknesses, pitches and shapes of heat sinks. Ambient temperature, 25°C, heat source, 130W and cooling fan speed, 2500 rpm (50CFM) were used as boundary conditions, and heat transfer characteristics regarding temperature distribution and heat resistance were investigated using ANSYS Icepak. As a result, it has been found that as the number of fins of heat sink increases, the heat dissipation area increases to decrease heat resistance, and as the distance between each fin decreases, the ventilation resistance increases to decrease the flow intensity of the cooling air in contact with the heat dissipation area. The sunburst array also exhibits better heat transfer characteristics by obtaining a lower distribution of heat resistance with a cooling effect of about 10°C than the one-way basic array.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信