析因方差分析

C. Ryan
{"title":"析因方差分析","authors":"C. Ryan","doi":"10.1002/9781119121077.ch10","DOIUrl":null,"url":null,"abstract":"But these experiments [1] will not give us any information about the dependence or independence of the two factors, namely study habit and home environment. In such cases, we resort to Factorial ANOVA which not only helps us to study the effect of two or more factors but also gives information about their dependence or independence in the same experiment. There are many types of factorial designs like 22, 23, 32 etc. The simplest of them all is the 22 or 2 x 2 experiment.","PeriodicalId":403761,"journal":{"name":"Data Science with R for Psychologists and Healthcare Professionals","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Factorial ANOVA\",\"authors\":\"C. Ryan\",\"doi\":\"10.1002/9781119121077.ch10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"But these experiments [1] will not give us any information about the dependence or independence of the two factors, namely study habit and home environment. In such cases, we resort to Factorial ANOVA which not only helps us to study the effect of two or more factors but also gives information about their dependence or independence in the same experiment. There are many types of factorial designs like 22, 23, 32 etc. The simplest of them all is the 22 or 2 x 2 experiment.\",\"PeriodicalId\":403761,\"journal\":{\"name\":\"Data Science with R for Psychologists and Healthcare Professionals\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data Science with R for Psychologists and Healthcare Professionals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/9781119121077.ch10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Science with R for Psychologists and Healthcare Professionals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/9781119121077.ch10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

但是这些实验[1]并不能告诉我们学习习惯和家庭环境这两个因素是依赖还是独立。在这种情况下,我们求助于因子方差分析,它不仅帮助我们研究两个或多个因素的影响,而且在同一个实验中给出了它们的依赖性或独立性的信息。阶乘设计有许多类型,如22、23、32等。其中最简单的是22或2 × 2实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Factorial ANOVA
But these experiments [1] will not give us any information about the dependence or independence of the two factors, namely study habit and home environment. In such cases, we resort to Factorial ANOVA which not only helps us to study the effect of two or more factors but also gives information about their dependence or independence in the same experiment. There are many types of factorial designs like 22, 23, 32 etc. The simplest of them all is the 22 or 2 x 2 experiment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信