学习情感固有词嵌入,用于词级和句子级情感分析

Zhihua Zhang, Man Lan
{"title":"学习情感固有词嵌入,用于词级和句子级情感分析","authors":"Zhihua Zhang, Man Lan","doi":"10.1109/IALP.2015.7451540","DOIUrl":null,"url":null,"abstract":"Vector-based word representations have made great progress on many Natural Language Processing tasks. However, due to the lack of sentiment information, the traditional word vectors are insufficient to settle sentiment analysis tasks. In order to capture the sentiment information, we extended Continuous Skip-gram model (Skip-gram) and presented two sentiment word embedding models by integrating sentiment information into semantic word representations. Experimental results showed that the sentiment word embeddings learned by two models indeed capture sentiment and semantic information as well. Moreover, the proposed sentiment word embedding models outperform traditional word vectors on both Chinese and English corpora.","PeriodicalId":256927,"journal":{"name":"2015 International Conference on Asian Language Processing (IALP)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Learning sentiment-inherent word embedding for word-level and sentence-level sentiment analysis\",\"authors\":\"Zhihua Zhang, Man Lan\",\"doi\":\"10.1109/IALP.2015.7451540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vector-based word representations have made great progress on many Natural Language Processing tasks. However, due to the lack of sentiment information, the traditional word vectors are insufficient to settle sentiment analysis tasks. In order to capture the sentiment information, we extended Continuous Skip-gram model (Skip-gram) and presented two sentiment word embedding models by integrating sentiment information into semantic word representations. Experimental results showed that the sentiment word embeddings learned by two models indeed capture sentiment and semantic information as well. Moreover, the proposed sentiment word embedding models outperform traditional word vectors on both Chinese and English corpora.\",\"PeriodicalId\":256927,\"journal\":{\"name\":\"2015 International Conference on Asian Language Processing (IALP)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Asian Language Processing (IALP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IALP.2015.7451540\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Asian Language Processing (IALP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP.2015.7451540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

基于向量的词表示在许多自然语言处理任务中取得了很大的进展。然而,由于缺乏情感信息,传统的词向量不足以解决情感分析任务。为了捕获情感信息,我们扩展了连续跳格模型(Skip-gram),通过将情感信息整合到语义词表示中,提出了两种情感词嵌入模型。实验结果表明,两种模型学习的情感词嵌入确实能够捕获情感和语义信息。此外,本文提出的情感词嵌入模型在中英文语料库上的表现都优于传统的词向量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning sentiment-inherent word embedding for word-level and sentence-level sentiment analysis
Vector-based word representations have made great progress on many Natural Language Processing tasks. However, due to the lack of sentiment information, the traditional word vectors are insufficient to settle sentiment analysis tasks. In order to capture the sentiment information, we extended Continuous Skip-gram model (Skip-gram) and presented two sentiment word embedding models by integrating sentiment information into semantic word representations. Experimental results showed that the sentiment word embeddings learned by two models indeed capture sentiment and semantic information as well. Moreover, the proposed sentiment word embedding models outperform traditional word vectors on both Chinese and English corpora.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信