分支通道中流体流动的简单浸入式边界求解器数值模拟的验证

R. Keslerová, A. Lancmanová, T. Bodnár
{"title":"分支通道中流体流动的简单浸入式边界求解器数值模拟的验证","authors":"R. Keslerová, A. Lancmanová, T. Bodnár","doi":"10.21136/panm.2022.09","DOIUrl":null,"url":null,"abstract":"This work deals with the flow of incompressible viscous fluids in a two-dimensional branching channel. Using the immersed boundary method, a new finite difference solver was developed to interpret the channel geometry. The numerical results obtained by this new solver are compared with the numerical simulations of the older finite volume method code and with the results obtained with OpenFOAM. The aim of this work is to verify whether the immersed boundary method is suitable for fluid flow in channels with more complex geometries with difficult grid generation.","PeriodicalId":197168,"journal":{"name":"Programs and Algorithms of Numerical Mathematics 21","volume":"129 13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Validation of numerical simulations of a simple immersed boundary solver for fluid flow in branching channels\",\"authors\":\"R. Keslerová, A. Lancmanová, T. Bodnár\",\"doi\":\"10.21136/panm.2022.09\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work deals with the flow of incompressible viscous fluids in a two-dimensional branching channel. Using the immersed boundary method, a new finite difference solver was developed to interpret the channel geometry. The numerical results obtained by this new solver are compared with the numerical simulations of the older finite volume method code and with the results obtained with OpenFOAM. The aim of this work is to verify whether the immersed boundary method is suitable for fluid flow in channels with more complex geometries with difficult grid generation.\",\"PeriodicalId\":197168,\"journal\":{\"name\":\"Programs and Algorithms of Numerical Mathematics 21\",\"volume\":\"129 13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Programs and Algorithms of Numerical Mathematics 21\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21136/panm.2022.09\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Programs and Algorithms of Numerical Mathematics 21","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21136/panm.2022.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究不可压缩粘性流体在二维分支通道中的流动。利用浸入边界法,提出了一种新的有限差分解算器来解释沟道的几何形状。将新求解器的数值模拟结果与旧有限体积法程序的数值模拟结果和OpenFOAM软件的数值模拟结果进行了比较。本文的目的是验证浸入边界法是否适用于更复杂几何形状、网格生成困难的通道内的流体流动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Validation of numerical simulations of a simple immersed boundary solver for fluid flow in branching channels
This work deals with the flow of incompressible viscous fluids in a two-dimensional branching channel. Using the immersed boundary method, a new finite difference solver was developed to interpret the channel geometry. The numerical results obtained by this new solver are compared with the numerical simulations of the older finite volume method code and with the results obtained with OpenFOAM. The aim of this work is to verify whether the immersed boundary method is suitable for fluid flow in channels with more complex geometries with difficult grid generation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信