基于遗传算法优化anfisc控制设计,获得COVID-19疫苗接种率和隔离率

Z. Abbasi, M. Shafieirad, A. H. Amiri Mehra, I. Zamani
{"title":"基于遗传算法优化anfisc控制设计,获得COVID-19疫苗接种率和隔离率","authors":"Z. Abbasi, M. Shafieirad, A. H. Amiri Mehra, I. Zamani","doi":"10.1109/ICEE52715.2021.9544298","DOIUrl":null,"url":null,"abstract":"In this work, an Adaptive-Network-based Fuzzy Inference System (ANFIS) control is designed and optimized with the Genetic Algorithm (GA) to control the COVID-19 described by the SEIAR (Susceptible - Exposed - Infected - Asymptomatic - Recovered) epidemic model. This work aims to reduce the number of infected and susceptible people by isolation and vaccination, respectively. In this regard, the ANFIS-based controller is designed. The GA is employed to generate an optimal data set by minimizing the appropriate objective function to train the ANFIS algorithm. The obtained results are evaluated via simulation in MATLAB® software to show the capability of the controller in overcoming the outbreak.","PeriodicalId":254932,"journal":{"name":"2021 29th Iranian Conference on Electrical Engineering (ICEE)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Optimized ANFIS-based Control Design Using Genetic Algorithm to Obtain the Vaccination and Isolation Rates for the COVID-19\",\"authors\":\"Z. Abbasi, M. Shafieirad, A. H. Amiri Mehra, I. Zamani\",\"doi\":\"10.1109/ICEE52715.2021.9544298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, an Adaptive-Network-based Fuzzy Inference System (ANFIS) control is designed and optimized with the Genetic Algorithm (GA) to control the COVID-19 described by the SEIAR (Susceptible - Exposed - Infected - Asymptomatic - Recovered) epidemic model. This work aims to reduce the number of infected and susceptible people by isolation and vaccination, respectively. In this regard, the ANFIS-based controller is designed. The GA is employed to generate an optimal data set by minimizing the appropriate objective function to train the ANFIS algorithm. The obtained results are evaluated via simulation in MATLAB® software to show the capability of the controller in overcoming the outbreak.\",\"PeriodicalId\":254932,\"journal\":{\"name\":\"2021 29th Iranian Conference on Electrical Engineering (ICEE)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 29th Iranian Conference on Electrical Engineering (ICEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEE52715.2021.9544298\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 29th Iranian Conference on Electrical Engineering (ICEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEE52715.2021.9544298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文设计了一种基于自适应网络的模糊推理系统(ANFIS)控制,并利用遗传算法(GA)对SEIAR(易感-暴露-感染-无症状-恢复)流行病模型所描述的COVID-19进行了优化。这项工作的目的是分别通过隔离和接种疫苗来减少感染者和易感人群的数量。为此,设计了基于anfiss的控制器。利用遗传算法通过最小化适当的目标函数来生成最优的数据集来训练ANFIS算法。在MATLAB®软件中对得到的结果进行了仿真评估,以显示控制器克服爆发的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimized ANFIS-based Control Design Using Genetic Algorithm to Obtain the Vaccination and Isolation Rates for the COVID-19
In this work, an Adaptive-Network-based Fuzzy Inference System (ANFIS) control is designed and optimized with the Genetic Algorithm (GA) to control the COVID-19 described by the SEIAR (Susceptible - Exposed - Infected - Asymptomatic - Recovered) epidemic model. This work aims to reduce the number of infected and susceptible people by isolation and vaccination, respectively. In this regard, the ANFIS-based controller is designed. The GA is employed to generate an optimal data set by minimizing the appropriate objective function to train the ANFIS algorithm. The obtained results are evaluated via simulation in MATLAB® software to show the capability of the controller in overcoming the outbreak.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信