Md Wasiur Rahman, M. Gavrilova
{"title":"基于步态骨骼关节距离特征的人体识别","authors":"Md Wasiur Rahman, M. Gavrilova","doi":"10.4018/IJSSCI.2017100102","DOIUrl":null,"url":null,"abstract":"Gaitnotonlydefinesthewayapersonwalks,butalsoprovidesinsightsonanindividual’sdaily routine,mentalstateorevencognitivefunction.Theimportanceofincorporatingcognitivebehavior andanalysisinbiometricsystemshasbeennotedrecently.Inthisarticle,authorsdevelopabiometric securitysystemusinggait-basedskeletalinformationobtainedfromMicrosoftKinectv1sensor.The gaitcycleiscalculatedbydetectingthethreeconsecutivelocalminimabetweenthejointdistance ofleftandrightankles.Authorshaveutilizedthedistancefeaturevectorforeachofthejointswith respecttootherjointsinthegaitcycle.Aftermeanandvariancefeaturesareextractedfromthedistance featurevector,theKNNalgorithmisusedforclassificationpurpose.Theclassificationaccuracyofthe authors’approachis93.33%.Experimentalresultsshowthattheproposedapproachachievesbetter recognitionaccuracythenotherstate-of-the-artapproaches.Incorporatinggaitbiometricinasituation awarenesssystemforidentificationofamentalstateisoneofthefuturedirectionsofthisresearch. KeywoRDS Biometric System, Cognitive Function, Feature Distance Vector, Gait, Gait Cycle, K Nearest Neighbors (KNN), Kinect Sensor, Pattern Recognition","PeriodicalId":432255,"journal":{"name":"Int. J. Softw. Sci. Comput. Intell.","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Human Identification Using Gait Skeletal Joint Distance Features\",\"authors\":\"Md Wasiur Rahman, M. Gavrilova\",\"doi\":\"10.4018/IJSSCI.2017100102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gaitnotonlydefinesthewayapersonwalks,butalsoprovidesinsightsonanindividual’sdaily routine,mentalstateorevencognitivefunction.Theimportanceofincorporatingcognitivebehavior andanalysisinbiometricsystemshasbeennotedrecently.Inthisarticle,authorsdevelopabiometric securitysystemusinggait-basedskeletalinformationobtainedfromMicrosoftKinectv1sensor.The gaitcycleiscalculatedbydetectingthethreeconsecutivelocalminimabetweenthejointdistance ofleftandrightankles.Authorshaveutilizedthedistancefeaturevectorforeachofthejointswith respecttootherjointsinthegaitcycle.Aftermeanandvariancefeaturesareextractedfromthedistance featurevector,theKNNalgorithmisusedforclassificationpurpose.Theclassificationaccuracyofthe authors’approachis93.33%.Experimentalresultsshowthattheproposedapproachachievesbetter recognitionaccuracythenotherstate-of-the-artapproaches.Incorporatinggaitbiometricinasituation awarenesssystemforidentificationofamentalstateisoneofthefuturedirectionsofthisresearch. KeywoRDS Biometric System, Cognitive Function, Feature Distance Vector, Gait, Gait Cycle, K Nearest Neighbors (KNN), Kinect Sensor, Pattern Recognition\",\"PeriodicalId\":432255,\"journal\":{\"name\":\"Int. J. Softw. Sci. Comput. Intell.\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Softw. Sci. Comput. Intell.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJSSCI.2017100102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Softw. Sci. Comput. Intell.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJSSCI.2017100102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Human Identification Using Gait Skeletal Joint Distance Features
Gaitnotonlydefinesthewayapersonwalks,butalsoprovidesinsightsonanindividual’sdaily routine,mentalstateorevencognitivefunction.Theimportanceofincorporatingcognitivebehavior andanalysisinbiometricsystemshasbeennotedrecently.Inthisarticle,authorsdevelopabiometric securitysystemusinggait-basedskeletalinformationobtainedfromMicrosoftKinectv1sensor.The gaitcycleiscalculatedbydetectingthethreeconsecutivelocalminimabetweenthejointdistance ofleftandrightankles.Authorshaveutilizedthedistancefeaturevectorforeachofthejointswith respecttootherjointsinthegaitcycle.Aftermeanandvariancefeaturesareextractedfromthedistance featurevector,theKNNalgorithmisusedforclassificationpurpose.Theclassificationaccuracyofthe authors’approachis93.33%.Experimentalresultsshowthattheproposedapproachachievesbetter recognitionaccuracythenotherstate-of-the-artapproaches.Incorporatinggaitbiometricinasituation awarenesssystemforidentificationofamentalstateisoneofthefuturedirectionsofthisresearch. KeywoRDS Biometric System, Cognitive Function, Feature Distance Vector, Gait, Gait Cycle, K Nearest Neighbors (KNN), Kinect Sensor, Pattern Recognition