TDS-Net:基于时间差分共生神经网络的快速动态随机手势认证

Wen-Bing Song, Wenxiong Kang, Yulin Yang, Linpu Fang, Chang Liu, Xingyan Liu
{"title":"TDS-Net:基于时间差分共生神经网络的快速动态随机手势认证","authors":"Wen-Bing Song, Wenxiong Kang, Yulin Yang, Linpu Fang, Chang Liu, Xingyan Liu","doi":"10.1109/IJCB52358.2021.9484390","DOIUrl":null,"url":null,"abstract":"Hand gesture is a new emerging biometric trait containing both physiological and behavioral characteristics. With the popularity of various cameras, and the rich identity features and contactless authentication mode embedded in gestures themselves, vision-based hand gesture authentication has great potential value. However, current hand gesture authentication methods heavily rely on defined gestures and require identical enrollment and verification gestures, which limits the user-friendliness and efficiency of authentication. It is arguably true that authentication in a simpler and faster way, without the need to remember gestures, will be more approachable. Thus, a fast dynamic random hand gesture authentication method is introduced, in which users can perform a random improvised gesture in both the enrollment and verification stage. To better utilize the physiological and behavioral characteristics of hand gestures, an efficient network named Temporal Difference Symbiotic Neural Network (TDS-Net) equipped with our designed behavioral energy-based feature fusion module (BE-Fusion module) is proposed. Extensive experiments on the SCUT-DHGA dataset demonstrate that TDS-Net outperforms the recent state-of-the-art methods.","PeriodicalId":175984,"journal":{"name":"2021 IEEE International Joint Conference on Biometrics (IJCB)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"TDS-Net: Towards Fast Dynamic Random Hand Gesture Authentication via Temporal Difference Symbiotic Neural Network\",\"authors\":\"Wen-Bing Song, Wenxiong Kang, Yulin Yang, Linpu Fang, Chang Liu, Xingyan Liu\",\"doi\":\"10.1109/IJCB52358.2021.9484390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hand gesture is a new emerging biometric trait containing both physiological and behavioral characteristics. With the popularity of various cameras, and the rich identity features and contactless authentication mode embedded in gestures themselves, vision-based hand gesture authentication has great potential value. However, current hand gesture authentication methods heavily rely on defined gestures and require identical enrollment and verification gestures, which limits the user-friendliness and efficiency of authentication. It is arguably true that authentication in a simpler and faster way, without the need to remember gestures, will be more approachable. Thus, a fast dynamic random hand gesture authentication method is introduced, in which users can perform a random improvised gesture in both the enrollment and verification stage. To better utilize the physiological and behavioral characteristics of hand gestures, an efficient network named Temporal Difference Symbiotic Neural Network (TDS-Net) equipped with our designed behavioral energy-based feature fusion module (BE-Fusion module) is proposed. Extensive experiments on the SCUT-DHGA dataset demonstrate that TDS-Net outperforms the recent state-of-the-art methods.\",\"PeriodicalId\":175984,\"journal\":{\"name\":\"2021 IEEE International Joint Conference on Biometrics (IJCB)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Joint Conference on Biometrics (IJCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCB52358.2021.9484390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCB52358.2021.9484390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

手势是一种新兴的包含生理和行为特征的生物特征。随着各种摄像头的普及,以及手势本身所嵌入的丰富身份特征和非接触式认证模式,基于视觉的手势认证具有巨大的潜在价值。然而,目前的手势认证方法严重依赖于已定义的手势,并且需要相同的注册和验证手势,这限制了认证的用户友好性和效率。确实,不需要记住手势,以更简单、更快速的方式进行身份验证将更加平易近人。在此基础上,提出了一种快速动态随机手势认证方法,用户可以在注册和验证阶段进行随机即兴手势认证。为了更好地利用手势的生理和行为特征,我们设计了一种基于行为能量特征融合模块(BE-Fusion模块)的高效网络——时间差分共生神经网络(TDS-Net)。在SCUT-DHGA数据集上进行的大量实验表明,TDS-Net优于最近最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TDS-Net: Towards Fast Dynamic Random Hand Gesture Authentication via Temporal Difference Symbiotic Neural Network
Hand gesture is a new emerging biometric trait containing both physiological and behavioral characteristics. With the popularity of various cameras, and the rich identity features and contactless authentication mode embedded in gestures themselves, vision-based hand gesture authentication has great potential value. However, current hand gesture authentication methods heavily rely on defined gestures and require identical enrollment and verification gestures, which limits the user-friendliness and efficiency of authentication. It is arguably true that authentication in a simpler and faster way, without the need to remember gestures, will be more approachable. Thus, a fast dynamic random hand gesture authentication method is introduced, in which users can perform a random improvised gesture in both the enrollment and verification stage. To better utilize the physiological and behavioral characteristics of hand gestures, an efficient network named Temporal Difference Symbiotic Neural Network (TDS-Net) equipped with our designed behavioral energy-based feature fusion module (BE-Fusion module) is proposed. Extensive experiments on the SCUT-DHGA dataset demonstrate that TDS-Net outperforms the recent state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信