听觉感知的时频神经网络分层模型

V.C. Georgopoulos, D. Preis
{"title":"听觉感知的时频神经网络分层模型","authors":"V.C. Georgopoulos, D. Preis","doi":"10.1109/ASPAA.1993.379981","DOIUrl":null,"url":null,"abstract":"This paper introduces a layered neural network model for hearing perception. It is based on five important perceptual properties of hearing. The neural network model processes a joint-domain representation of the input signal to yield the desired perceptual properties. The focus is on the first two layers of the model, the transformation layer and two feature extraction layers.<<ETX>>","PeriodicalId":270576,"journal":{"name":"Proceedings of IEEE Workshop on Applications of Signal Processing to Audio and Acoustics","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A time-frequency neutral network layered model for hearing perception\",\"authors\":\"V.C. Georgopoulos, D. Preis\",\"doi\":\"10.1109/ASPAA.1993.379981\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a layered neural network model for hearing perception. It is based on five important perceptual properties of hearing. The neural network model processes a joint-domain representation of the input signal to yield the desired perceptual properties. The focus is on the first two layers of the model, the transformation layer and two feature extraction layers.<<ETX>>\",\"PeriodicalId\":270576,\"journal\":{\"name\":\"Proceedings of IEEE Workshop on Applications of Signal Processing to Audio and Acoustics\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of IEEE Workshop on Applications of Signal Processing to Audio and Acoustics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASPAA.1993.379981\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE Workshop on Applications of Signal Processing to Audio and Acoustics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPAA.1993.379981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

介绍了一种听觉感知分层神经网络模型。它基于听觉的五个重要感知特性。神经网络模型处理输入信号的联合域表示以产生期望的感知特性。重点是模型的前两层,转换层和两个特征提取层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A time-frequency neutral network layered model for hearing perception
This paper introduces a layered neural network model for hearing perception. It is based on five important perceptual properties of hearing. The neural network model processes a joint-domain representation of the input signal to yield the desired perceptual properties. The focus is on the first two layers of the model, the transformation layer and two feature extraction layers.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信