J. Jang, Jungi Min, Donguk Kim, Jingyu Park, Sung-Jin Choi, D. M. Kim, Dae Hwan Kim
{"title":"基于非准静态更新肖特基势垒高度的IGZO忆阻器SPICE紧凑模型","authors":"J. Jang, Jungi Min, Donguk Kim, Jingyu Park, Sung-Jin Choi, D. M. Kim, Dae Hwan Kim","doi":"10.1109/NANO46743.2019.8993957","DOIUrl":null,"url":null,"abstract":"A SPICE compact model based on non-quasi statically updated Schottky barrier is proposed and demonstrated in an IGZO memristors with Pd/IGZO/Mo structure. Our model combines the thermionic emission-based conduction and the potentiation/depression based on the Schottky barrier height modulation resulting from the oxygen ion migration or the electron trapping/detrapping at separate interface between the metal electrode and the switching layer. A stretched exponential function is used for non-quasi static update of the Schottky barrier. Proposed model reproduces the time-varying current, the DC I-V, and potentiation/depression characteristics very well with concrete parameter-extracting procedure. Our result is potentially useful in the design of devices and circuits for the oxide memristor-based neuromorphic computing.","PeriodicalId":365399,"journal":{"name":"2019 IEEE 19th International Conference on Nanotechnology (IEEE-NANO)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"SPICE compact model of IGZO memristor based on non-quasi statically updated Schottky barrier height\",\"authors\":\"J. Jang, Jungi Min, Donguk Kim, Jingyu Park, Sung-Jin Choi, D. M. Kim, Dae Hwan Kim\",\"doi\":\"10.1109/NANO46743.2019.8993957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A SPICE compact model based on non-quasi statically updated Schottky barrier is proposed and demonstrated in an IGZO memristors with Pd/IGZO/Mo structure. Our model combines the thermionic emission-based conduction and the potentiation/depression based on the Schottky barrier height modulation resulting from the oxygen ion migration or the electron trapping/detrapping at separate interface between the metal electrode and the switching layer. A stretched exponential function is used for non-quasi static update of the Schottky barrier. Proposed model reproduces the time-varying current, the DC I-V, and potentiation/depression characteristics very well with concrete parameter-extracting procedure. Our result is potentially useful in the design of devices and circuits for the oxide memristor-based neuromorphic computing.\",\"PeriodicalId\":365399,\"journal\":{\"name\":\"2019 IEEE 19th International Conference on Nanotechnology (IEEE-NANO)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 19th International Conference on Nanotechnology (IEEE-NANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANO46743.2019.8993957\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 19th International Conference on Nanotechnology (IEEE-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO46743.2019.8993957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SPICE compact model of IGZO memristor based on non-quasi statically updated Schottky barrier height
A SPICE compact model based on non-quasi statically updated Schottky barrier is proposed and demonstrated in an IGZO memristors with Pd/IGZO/Mo structure. Our model combines the thermionic emission-based conduction and the potentiation/depression based on the Schottky barrier height modulation resulting from the oxygen ion migration or the electron trapping/detrapping at separate interface between the metal electrode and the switching layer. A stretched exponential function is used for non-quasi static update of the Schottky barrier. Proposed model reproduces the time-varying current, the DC I-V, and potentiation/depression characteristics very well with concrete parameter-extracting procedure. Our result is potentially useful in the design of devices and circuits for the oxide memristor-based neuromorphic computing.