偶非模格的保密增益、平坦度因子和保密良度

Fuchun Lin, Cong Ling, J. Belfiore
{"title":"偶非模格的保密增益、平坦度因子和保密良度","authors":"Fuchun Lin, Cong Ling, J. Belfiore","doi":"10.1109/ISIT.2014.6874977","DOIUrl":null,"url":null,"abstract":"Nested lattices Ae ⊂ Ab have previously been studied for coding in the Gaussian wiretap channel and two design criteria, namely, the secrecy gain and flatness factor, have been proposed to study how the coarse lattice Ae should be chosen so as to maximally conceal the message against the eavesdropper. In this paper, we study the connection between these two criteria and show the secrecy-goodness of even unimodular lattices, which means exponentially vanishing flatness factor as the dimension grows.","PeriodicalId":127191,"journal":{"name":"2014 IEEE International Symposium on Information Theory","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Secrecy gain, flatness factor, and secrecy-goodness of even unimodular lattices\",\"authors\":\"Fuchun Lin, Cong Ling, J. Belfiore\",\"doi\":\"10.1109/ISIT.2014.6874977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nested lattices Ae ⊂ Ab have previously been studied for coding in the Gaussian wiretap channel and two design criteria, namely, the secrecy gain and flatness factor, have been proposed to study how the coarse lattice Ae should be chosen so as to maximally conceal the message against the eavesdropper. In this paper, we study the connection between these two criteria and show the secrecy-goodness of even unimodular lattices, which means exponentially vanishing flatness factor as the dimension grows.\",\"PeriodicalId\":127191,\"journal\":{\"name\":\"2014 IEEE International Symposium on Information Theory\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Symposium on Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2014.6874977\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2014.6874977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

嵌套晶格Ae∧Ab先前已被研究用于高斯窃听信道的编码,并提出了两个设计准则,即保密增益和平坦系数,来研究如何选择粗糙晶格Ae,从而最大限度地对窃听者隐藏信息。本文研究了这两个准则之间的联系,并证明了偶非模格的保密性,即平坦性因子随着维数的增加呈指数消失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Secrecy gain, flatness factor, and secrecy-goodness of even unimodular lattices
Nested lattices Ae ⊂ Ab have previously been studied for coding in the Gaussian wiretap channel and two design criteria, namely, the secrecy gain and flatness factor, have been proposed to study how the coarse lattice Ae should be chosen so as to maximally conceal the message against the eavesdropper. In this paper, we study the connection between these two criteria and show the secrecy-goodness of even unimodular lattices, which means exponentially vanishing flatness factor as the dimension grows.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信