基于混合局部码的边缘形状背景建模

Seokjin Hong, Jaemyun Kim, Adín Ramírez Rivera, Gihun Song, O. Chae
{"title":"基于混合局部码的边缘形状背景建模","authors":"Seokjin Hong, Jaemyun Kim, Adín Ramírez Rivera, Gihun Song, O. Chae","doi":"10.1109/AVSS.2016.7738015","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel edge descriptor method for background modeling. In comparison to previous edge-based local-pattern methods, it is more robust to noise and illumination variations due to the use of principal gradient information in a local neighborhood. For the background modeling problem, we combined the proposed method with the Local Hybrid Pattern and experimented with an adaptive-dictionary-model based background modeling method. We show in the quantitative evaluations that the proposed methods is better than other local edge descriptors when applied to the same framework. Furthermore, we show that our proposed method is more powerful than other state of the art methods on standard datasets for the background modeling problem.","PeriodicalId":438290,"journal":{"name":"2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Edge shape pattern for background modeling based on hybrid local codes\",\"authors\":\"Seokjin Hong, Jaemyun Kim, Adín Ramírez Rivera, Gihun Song, O. Chae\",\"doi\":\"10.1109/AVSS.2016.7738015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel edge descriptor method for background modeling. In comparison to previous edge-based local-pattern methods, it is more robust to noise and illumination variations due to the use of principal gradient information in a local neighborhood. For the background modeling problem, we combined the proposed method with the Local Hybrid Pattern and experimented with an adaptive-dictionary-model based background modeling method. We show in the quantitative evaluations that the proposed methods is better than other local edge descriptors when applied to the same framework. Furthermore, we show that our proposed method is more powerful than other state of the art methods on standard datasets for the background modeling problem.\",\"PeriodicalId\":438290,\"journal\":{\"name\":\"2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AVSS.2016.7738015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2016.7738015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种新的边缘描述子背景建模方法。与以往基于边缘的局部模式方法相比,该方法利用了局部邻域的主梯度信息,对噪声和光照变化具有更强的鲁棒性。针对背景建模问题,将该方法与局部混合模式相结合,实验了一种基于自适应字典模型的背景建模方法。我们在定量评估中表明,当应用于同一框架时,所提出的方法优于其他局部边缘描述符。此外,我们表明,我们提出的方法在标准数据集的背景建模问题上比其他最先进的方法更强大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Edge shape pattern for background modeling based on hybrid local codes
In this paper, we propose a novel edge descriptor method for background modeling. In comparison to previous edge-based local-pattern methods, it is more robust to noise and illumination variations due to the use of principal gradient information in a local neighborhood. For the background modeling problem, we combined the proposed method with the Local Hybrid Pattern and experimented with an adaptive-dictionary-model based background modeling method. We show in the quantitative evaluations that the proposed methods is better than other local edge descriptors when applied to the same framework. Furthermore, we show that our proposed method is more powerful than other state of the art methods on standard datasets for the background modeling problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信