Riccardo Mancini, Antonio Ritacco, Giacomo Lanciano, T. Cucinotta
{"title":"高性能自组织映射","authors":"Riccardo Mancini, Antonio Ritacco, Giacomo Lanciano, T. Cucinotta","doi":"10.1109/SBAC-PAD49847.2020.00037","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce XPySom, a new open-source Python implementation of the well-known Self-Organizing Maps (SOM) technique. It is designed to achieve high performance on a single node, exploiting widely available Python libraries for vector processing on multi-core CPUs and GP-GPUs. We present results from an extensive experimental evaluation of XPySom in comparison to widely used open-source SOM implementations, showing that it outperforms the other available alternatives. Indeed, our experimentation carried out using the Extended MNIST open data set shows a speed-up of about 7x and 100x when compared to the best open-source multi-core implementations we could find with multi-core and GP-GPU acceleration, respectively, achieving the same accuracy levels in terms of quantization error.","PeriodicalId":202581,"journal":{"name":"2020 IEEE 32nd International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"XPySom: High-Performance Self-Organizing Maps\",\"authors\":\"Riccardo Mancini, Antonio Ritacco, Giacomo Lanciano, T. Cucinotta\",\"doi\":\"10.1109/SBAC-PAD49847.2020.00037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce XPySom, a new open-source Python implementation of the well-known Self-Organizing Maps (SOM) technique. It is designed to achieve high performance on a single node, exploiting widely available Python libraries for vector processing on multi-core CPUs and GP-GPUs. We present results from an extensive experimental evaluation of XPySom in comparison to widely used open-source SOM implementations, showing that it outperforms the other available alternatives. Indeed, our experimentation carried out using the Extended MNIST open data set shows a speed-up of about 7x and 100x when compared to the best open-source multi-core implementations we could find with multi-core and GP-GPU acceleration, respectively, achieving the same accuracy levels in terms of quantization error.\",\"PeriodicalId\":202581,\"journal\":{\"name\":\"2020 IEEE 32nd International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 32nd International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBAC-PAD49847.2020.00037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 32nd International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBAC-PAD49847.2020.00037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper, we introduce XPySom, a new open-source Python implementation of the well-known Self-Organizing Maps (SOM) technique. It is designed to achieve high performance on a single node, exploiting widely available Python libraries for vector processing on multi-core CPUs and GP-GPUs. We present results from an extensive experimental evaluation of XPySom in comparison to widely used open-source SOM implementations, showing that it outperforms the other available alternatives. Indeed, our experimentation carried out using the Extended MNIST open data set shows a speed-up of about 7x and 100x when compared to the best open-source multi-core implementations we could find with multi-core and GP-GPU acceleration, respectively, achieving the same accuracy levels in terms of quantization error.