步长间隔时间序列的预测

Etienne Zahnd, J. Brach, S. Perera, E. Sejdić
{"title":"步长间隔时间序列的预测","authors":"Etienne Zahnd, J. Brach, S. Perera, E. Sejdić","doi":"10.1109/SAM.2016.7569660","DOIUrl":null,"url":null,"abstract":"The power law in the frequency spectrum S(f) = 1/fβ allows for a good representation of the various time evolution and complex interactions of many physiological processes. The spectral exponent β can be interpreted as the degree of fractal characteristic which in turn makes it some sort of biomarker that gives an idea of the relative health of an individual. The prediction of the 1/fβ time series can thus prove to be an asset in the medical field where forecasting the future health state of an individual can be important for rehabilitation purposes. The goal of this paper is to consider the accuracy of several time series prediction methods such as the neural networks, regression trees and bagged regression trees learning method. To test these methods we simulate stride intervals time series as 1/fβ processes. Our results show that the regression trees can accurately predict between five and fifteen points.","PeriodicalId":159236,"journal":{"name":"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of stride interval time series\",\"authors\":\"Etienne Zahnd, J. Brach, S. Perera, E. Sejdić\",\"doi\":\"10.1109/SAM.2016.7569660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The power law in the frequency spectrum S(f) = 1/fβ allows for a good representation of the various time evolution and complex interactions of many physiological processes. The spectral exponent β can be interpreted as the degree of fractal characteristic which in turn makes it some sort of biomarker that gives an idea of the relative health of an individual. The prediction of the 1/fβ time series can thus prove to be an asset in the medical field where forecasting the future health state of an individual can be important for rehabilitation purposes. The goal of this paper is to consider the accuracy of several time series prediction methods such as the neural networks, regression trees and bagged regression trees learning method. To test these methods we simulate stride intervals time series as 1/fβ processes. Our results show that the regression trees can accurately predict between five and fifteen points.\",\"PeriodicalId\":159236,\"journal\":{\"name\":\"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAM.2016.7569660\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2016.7569660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

频谱S(f) = 1/fβ中的幂律可以很好地表示许多生理过程的各种时间演化和复杂的相互作用。谱指数β可以解释为分形特征的程度,这反过来又使它成为某种生物标志物,可以反映个体的相对健康状况。因此,1/fβ时间序列的预测可以证明是医学领域的一项资产,因为预测个人的未来健康状况对于康复目的很重要。本文的目标是考虑几种时间序列预测方法的准确性,如神经网络、回归树和袋回归树学习方法。为了验证这些方法,我们将步幅间隔时间序列模拟为1/fβ过程。我们的结果表明,回归树可以准确地预测5到15个点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of stride interval time series
The power law in the frequency spectrum S(f) = 1/fβ allows for a good representation of the various time evolution and complex interactions of many physiological processes. The spectral exponent β can be interpreted as the degree of fractal characteristic which in turn makes it some sort of biomarker that gives an idea of the relative health of an individual. The prediction of the 1/fβ time series can thus prove to be an asset in the medical field where forecasting the future health state of an individual can be important for rehabilitation purposes. The goal of this paper is to consider the accuracy of several time series prediction methods such as the neural networks, regression trees and bagged regression trees learning method. To test these methods we simulate stride intervals time series as 1/fβ processes. Our results show that the regression trees can accurately predict between five and fifteen points.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信