一种新的文本分类特征选择方法

Xingfeng Wang, Heecheol Kim
{"title":"一种新的文本分类特征选择方法","authors":"Xingfeng Wang, Heecheol Kim","doi":"10.6109/jicce.2017.15.1.53","DOIUrl":null,"url":null,"abstract":"The preferred feature selection methods for text classification are filter-based. In a common filter-based feature selection scheme, unique scores are assigned to features; then, these features are sorted according to their scores. The last step is to add the top-N features to the feature set. In this paper, we propose an improved global feature selection scheme wherein its last step is modified to obtain a more representative feature set. The proposed method aims to improve the classification performance of global feature selection methods by creating a feature set representing all classes almost equally. For this purpose, a local feature selection method is used in the proposed method to label features according to their discriminative power on classes; these labels are used while producing the feature sets. Experimental results obtained using the well-known 20 Newsgroups and Reuters-21578 datasets with the k-nearest neighbor algorithm and a support vector machine indicate that the proposed method improves the classification performance in terms of a widely known metric (F₁).","PeriodicalId":272551,"journal":{"name":"J. Inform. and Commun. Convergence Engineering","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"New Feature Selection Method for Text Categorization\",\"authors\":\"Xingfeng Wang, Heecheol Kim\",\"doi\":\"10.6109/jicce.2017.15.1.53\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The preferred feature selection methods for text classification are filter-based. In a common filter-based feature selection scheme, unique scores are assigned to features; then, these features are sorted according to their scores. The last step is to add the top-N features to the feature set. In this paper, we propose an improved global feature selection scheme wherein its last step is modified to obtain a more representative feature set. The proposed method aims to improve the classification performance of global feature selection methods by creating a feature set representing all classes almost equally. For this purpose, a local feature selection method is used in the proposed method to label features according to their discriminative power on classes; these labels are used while producing the feature sets. Experimental results obtained using the well-known 20 Newsgroups and Reuters-21578 datasets with the k-nearest neighbor algorithm and a support vector machine indicate that the proposed method improves the classification performance in terms of a widely known metric (F₁).\",\"PeriodicalId\":272551,\"journal\":{\"name\":\"J. Inform. and Commun. Convergence Engineering\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Inform. and Commun. Convergence Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6109/jicce.2017.15.1.53\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Inform. and Commun. Convergence Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6109/jicce.2017.15.1.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

文本分类的首选特征选择方法是基于过滤器的。在常见的基于过滤器的特征选择方案中,为特征分配唯一分数;然后,根据这些特征的得分对它们进行排序。最后一步是将top-N个特征添加到特征集中。在本文中,我们提出了一种改进的全局特征选择方案,其中最后一步进行了修改,以获得更具代表性的特征集。该方法旨在通过创建一个几乎平等地表示所有类别的特征集来提高全局特征选择方法的分类性能。为此,该方法采用局部特征选择方法,根据特征在类上的判别能力对特征进行标记;这些标签在生成特性集时使用。使用众所周知的20个新闻组和路透社-21578数据集进行k近邻算法和支持向量机的实验结果表明,所提出的方法在众所周知的度量(F₁)方面提高了分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Feature Selection Method for Text Categorization
The preferred feature selection methods for text classification are filter-based. In a common filter-based feature selection scheme, unique scores are assigned to features; then, these features are sorted according to their scores. The last step is to add the top-N features to the feature set. In this paper, we propose an improved global feature selection scheme wherein its last step is modified to obtain a more representative feature set. The proposed method aims to improve the classification performance of global feature selection methods by creating a feature set representing all classes almost equally. For this purpose, a local feature selection method is used in the proposed method to label features according to their discriminative power on classes; these labels are used while producing the feature sets. Experimental results obtained using the well-known 20 Newsgroups and Reuters-21578 datasets with the k-nearest neighbor algorithm and a support vector machine indicate that the proposed method improves the classification performance in terms of a widely known metric (F₁).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信