基于用户反馈和机器学习的用户界面适应

Nesrine Mezhoudi
{"title":"基于用户反馈和机器学习的用户界面适应","authors":"Nesrine Mezhoudi","doi":"10.1145/2451176.2451184","DOIUrl":null,"url":null,"abstract":"With the growing need for intelligent software, exploring the potential of Machine Learning (ML) algorithms for User Interface (UI) adaptation becomes an ultimate requirement. The work reported in this paper aims at enhancing the UI interaction by using a Rule Management Engine (RME) in order to handle a training phase for personalization. This phase is intended to teach to the system novel adaptation strategies based on the end-user feedback concerning his interaction (history, preferences...). The goal is also to ensure an adaptation learning by capitalizing on the user feedbacks via a promoting/demoting technique, and then to employ it later in different levels of the UI development.","PeriodicalId":253850,"journal":{"name":"IUI '13 Companion","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"User interface adaptation based on user feedback and machine learning\",\"authors\":\"Nesrine Mezhoudi\",\"doi\":\"10.1145/2451176.2451184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the growing need for intelligent software, exploring the potential of Machine Learning (ML) algorithms for User Interface (UI) adaptation becomes an ultimate requirement. The work reported in this paper aims at enhancing the UI interaction by using a Rule Management Engine (RME) in order to handle a training phase for personalization. This phase is intended to teach to the system novel adaptation strategies based on the end-user feedback concerning his interaction (history, preferences...). The goal is also to ensure an adaptation learning by capitalizing on the user feedbacks via a promoting/demoting technique, and then to employ it later in different levels of the UI development.\",\"PeriodicalId\":253850,\"journal\":{\"name\":\"IUI '13 Companion\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IUI '13 Companion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2451176.2451184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IUI '13 Companion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2451176.2451184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

随着对智能软件的需求不断增长,探索机器学习(ML)算法在用户界面(UI)适应方面的潜力成为最终要求。本文报告的工作旨在通过使用规则管理引擎(RME)来增强UI交互,以便处理个性化的训练阶段。这个阶段的目的是根据终端用户的交互反馈(历史、偏好……)向系统传授新的适应策略。我们的目标也是通过提升/降级技术利用用户反馈来确保适应性学习,然后在UI开发的不同层次中使用它。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
User interface adaptation based on user feedback and machine learning
With the growing need for intelligent software, exploring the potential of Machine Learning (ML) algorithms for User Interface (UI) adaptation becomes an ultimate requirement. The work reported in this paper aims at enhancing the UI interaction by using a Rule Management Engine (RME) in order to handle a training phase for personalization. This phase is intended to teach to the system novel adaptation strategies based on the end-user feedback concerning his interaction (history, preferences...). The goal is also to ensure an adaptation learning by capitalizing on the user feedbacks via a promoting/demoting technique, and then to employ it later in different levels of the UI development.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信