Bongki Son, Yunjae Suh, Sungho Kim, Heejae Jung, Jun-Seok Kim, Chang-Woo Shin, Keunju Park, Kyoobin Lee, Jin Man Park, J. Woo, Yohan J. Roh, Hyunku Lee, Y. Wang, I. Ovsiannikov, H. Ryu
{"title":"4.1 640×480动态视觉传感器,9µm像素,300Meps地址事件表示","authors":"Bongki Son, Yunjae Suh, Sungho Kim, Heejae Jung, Jun-Seok Kim, Chang-Woo Shin, Keunju Park, Kyoobin Lee, Jin Man Park, J. Woo, Yohan J. Roh, Hyunku Lee, Y. Wang, I. Ovsiannikov, H. Ryu","doi":"10.1109/ISSCC.2017.7870263","DOIUrl":null,"url":null,"abstract":"We report a VGA dynamic vision sensor (DVS) with a 9µm pixel, developed through a digital as well as an analog implementation. DVS systems in the literature try to increase spatial resolution up to QVGA [1–2] and data rates up to 50 million events per second (Meps) (self-acknowledged) [3], but they are still inadequate for high-performance applications such as gesture recognition, drones, automotive, etc. Moreover, the smallest reported pixel of 18.5µm is too large for economical mass production [3]. This paper reports a 640×480 VGA-resolution DVS system with a 9µm pixel pitch supporting a data rate of 300Meps for sufficient event transfer in spite of higher resolution. Maintaining acceptable pixel performance, the pixel circuitry is carefully designed and optimized using a BSI CIS process. To acquire data (i.e., pixel events) at high speed even with high resolution (e.g., VGA), a fully synthesized word-serial group address-event representation (G-AER) is implemented, which handles massive events in parallel by binding neighboring 8 pixels into a group. In addition, a 10b programmable bias generator dedicated to a DVS system provides easy controllability of pixel biases and event thresholds.","PeriodicalId":269679,"journal":{"name":"2017 IEEE International Solid-State Circuits Conference (ISSCC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"136","resultStr":"{\"title\":\"4.1 A 640×480 dynamic vision sensor with a 9µm pixel and 300Meps address-event representation\",\"authors\":\"Bongki Son, Yunjae Suh, Sungho Kim, Heejae Jung, Jun-Seok Kim, Chang-Woo Shin, Keunju Park, Kyoobin Lee, Jin Man Park, J. Woo, Yohan J. Roh, Hyunku Lee, Y. Wang, I. Ovsiannikov, H. Ryu\",\"doi\":\"10.1109/ISSCC.2017.7870263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report a VGA dynamic vision sensor (DVS) with a 9µm pixel, developed through a digital as well as an analog implementation. DVS systems in the literature try to increase spatial resolution up to QVGA [1–2] and data rates up to 50 million events per second (Meps) (self-acknowledged) [3], but they are still inadequate for high-performance applications such as gesture recognition, drones, automotive, etc. Moreover, the smallest reported pixel of 18.5µm is too large for economical mass production [3]. This paper reports a 640×480 VGA-resolution DVS system with a 9µm pixel pitch supporting a data rate of 300Meps for sufficient event transfer in spite of higher resolution. Maintaining acceptable pixel performance, the pixel circuitry is carefully designed and optimized using a BSI CIS process. To acquire data (i.e., pixel events) at high speed even with high resolution (e.g., VGA), a fully synthesized word-serial group address-event representation (G-AER) is implemented, which handles massive events in parallel by binding neighboring 8 pixels into a group. In addition, a 10b programmable bias generator dedicated to a DVS system provides easy controllability of pixel biases and event thresholds.\",\"PeriodicalId\":269679,\"journal\":{\"name\":\"2017 IEEE International Solid-State Circuits Conference (ISSCC)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"136\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Solid-State Circuits Conference (ISSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC.2017.7870263\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Solid-State Circuits Conference (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2017.7870263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
4.1 A 640×480 dynamic vision sensor with a 9µm pixel and 300Meps address-event representation
We report a VGA dynamic vision sensor (DVS) with a 9µm pixel, developed through a digital as well as an analog implementation. DVS systems in the literature try to increase spatial resolution up to QVGA [1–2] and data rates up to 50 million events per second (Meps) (self-acknowledged) [3], but they are still inadequate for high-performance applications such as gesture recognition, drones, automotive, etc. Moreover, the smallest reported pixel of 18.5µm is too large for economical mass production [3]. This paper reports a 640×480 VGA-resolution DVS system with a 9µm pixel pitch supporting a data rate of 300Meps for sufficient event transfer in spite of higher resolution. Maintaining acceptable pixel performance, the pixel circuitry is carefully designed and optimized using a BSI CIS process. To acquire data (i.e., pixel events) at high speed even with high resolution (e.g., VGA), a fully synthesized word-serial group address-event representation (G-AER) is implemented, which handles massive events in parallel by binding neighboring 8 pixels into a group. In addition, a 10b programmable bias generator dedicated to a DVS system provides easy controllability of pixel biases and event thresholds.