二阶非线性系统的SDRE全局稳定控制

E. B. Erdem, A. Alleyne
{"title":"二阶非线性系统的SDRE全局稳定控制","authors":"E. B. Erdem, A. Alleyne","doi":"10.1109/ACC.1999.786502","DOIUrl":null,"url":null,"abstract":"Infinite-horizon nonlinear regulation of second order systems using the state dependent Riccati equation (SDRE) method is considered. By a convenient parametrization of the A(x) matrix, the state dependent algebraic Riccati equation is solved analytically. Thus, the closed-loop system equations are obtained in analytical form. Global stability analysis is performed by the second method of Lyapunov. By the aforementioned parametrization, it is sufficient for the Lyapunov function derivative to be negative semi-definite to achieve global asymptotic stability. Accordingly, a relatively simple condition for global asymptotic stability of the closed-loop system is derived. Two illustrative examples are included.","PeriodicalId":441363,"journal":{"name":"Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Globally stabilizing second order nonlinear systems by SDRE control\",\"authors\":\"E. B. Erdem, A. Alleyne\",\"doi\":\"10.1109/ACC.1999.786502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Infinite-horizon nonlinear regulation of second order systems using the state dependent Riccati equation (SDRE) method is considered. By a convenient parametrization of the A(x) matrix, the state dependent algebraic Riccati equation is solved analytically. Thus, the closed-loop system equations are obtained in analytical form. Global stability analysis is performed by the second method of Lyapunov. By the aforementioned parametrization, it is sufficient for the Lyapunov function derivative to be negative semi-definite to achieve global asymptotic stability. Accordingly, a relatively simple condition for global asymptotic stability of the closed-loop system is derived. Two illustrative examples are included.\",\"PeriodicalId\":441363,\"journal\":{\"name\":\"Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.1999.786502\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.1999.786502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

利用状态相关Riccati方程(SDRE)方法研究了二阶系统的无限视界非线性调节问题。通过对a (x)矩阵进行方便的参数化,对状态相关的代数Riccati方程进行了解析求解。从而得到闭环系统方程的解析形式。采用第二种李雅普诺夫方法进行全局稳定性分析。通过上述参数化,Lyapunov函数导数为负半定足以实现全局渐近稳定。据此,导出了闭环系统全局渐近稳定的一个相对简单的条件。包括两个说明性示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Globally stabilizing second order nonlinear systems by SDRE control
Infinite-horizon nonlinear regulation of second order systems using the state dependent Riccati equation (SDRE) method is considered. By a convenient parametrization of the A(x) matrix, the state dependent algebraic Riccati equation is solved analytically. Thus, the closed-loop system equations are obtained in analytical form. Global stability analysis is performed by the second method of Lyapunov. By the aforementioned parametrization, it is sufficient for the Lyapunov function derivative to be negative semi-definite to achieve global asymptotic stability. Accordingly, a relatively simple condition for global asymptotic stability of the closed-loop system is derived. Two illustrative examples are included.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信