巴拿赫空间和希尔伯特空间

Yau-Chuen Wong
{"title":"巴拿赫空间和希尔伯特空间","authors":"Yau-Chuen Wong","doi":"10.1201/9780203749807-2","DOIUrl":null,"url":null,"abstract":"Recall the definitions of a norm and inner product on a real vector space V. We will assume a basic knowledge of these concepts, as can be found in any linear algebra book. The following proposition defines a metric topology on any normed vector space: Then d is a metric on V , and the norm · is continuous in the metric topology. PROOF The axioms for a metric are easy to check — the triangle inequality follows from the triangle inequality for norms. The continuity of the norm follows from the continuity of d and the fact that v = d(v, 0). Definition: Banach Spaces A Banach space is a normed vector space whose associated metric is complete. For example, any norm on a finite-dimensional vector space is complete, and therefore any finite-dimensional normed vector space is a Banach space. However, the term \" Banach space \" is mostly used only in the context of infinite-dimensional spaces. We begin by giving some basic examples of infinite-dimensional Banach spaces.","PeriodicalId":218491,"journal":{"name":"Introductory Theory of Topological Vector Spaces","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Banach Spaces and Hilbert Spaces\",\"authors\":\"Yau-Chuen Wong\",\"doi\":\"10.1201/9780203749807-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recall the definitions of a norm and inner product on a real vector space V. We will assume a basic knowledge of these concepts, as can be found in any linear algebra book. The following proposition defines a metric topology on any normed vector space: Then d is a metric on V , and the norm · is continuous in the metric topology. PROOF The axioms for a metric are easy to check — the triangle inequality follows from the triangle inequality for norms. The continuity of the norm follows from the continuity of d and the fact that v = d(v, 0). Definition: Banach Spaces A Banach space is a normed vector space whose associated metric is complete. For example, any norm on a finite-dimensional vector space is complete, and therefore any finite-dimensional normed vector space is a Banach space. However, the term \\\" Banach space \\\" is mostly used only in the context of infinite-dimensional spaces. We begin by giving some basic examples of infinite-dimensional Banach spaces.\",\"PeriodicalId\":218491,\"journal\":{\"name\":\"Introductory Theory of Topological Vector Spaces\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Introductory Theory of Topological Vector Spaces\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1201/9780203749807-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Introductory Theory of Topological Vector Spaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9780203749807-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

回想一下实向量空间v上范数和内积的定义,我们将假设这些概念的基本知识,可以在任何线性代数书籍中找到。下面的命题定义了任意赋范向量空间上的度量拓扑:则d是V上的度量,且范数·在度量拓扑上连续。度规的公理很容易检验——从范数的三角形不等式推导出三角形不等式。范数的连续性来源于d的连续性和v = d(v, 0)的事实。定义:巴拿赫空间A巴拿赫空间是一个赋范向量空间,它的关联度规是完备的。例如,有限维向量空间上的任何范数都是完备的,因此任何有限维赋范向量空间都是巴拿赫空间。然而,术语“巴拿赫空间”大多只用于无限维空间的上下文中。我们首先给出无限维巴拿赫空间的一些基本例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Banach Spaces and Hilbert Spaces
Recall the definitions of a norm and inner product on a real vector space V. We will assume a basic knowledge of these concepts, as can be found in any linear algebra book. The following proposition defines a metric topology on any normed vector space: Then d is a metric on V , and the norm · is continuous in the metric topology. PROOF The axioms for a metric are easy to check — the triangle inequality follows from the triangle inequality for norms. The continuity of the norm follows from the continuity of d and the fact that v = d(v, 0). Definition: Banach Spaces A Banach space is a normed vector space whose associated metric is complete. For example, any norm on a finite-dimensional vector space is complete, and therefore any finite-dimensional normed vector space is a Banach space. However, the term " Banach space " is mostly used only in the context of infinite-dimensional spaces. We begin by giving some basic examples of infinite-dimensional Banach spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信