非线性半定规划的原对偶内点信赖域法收敛到二阶临界点

Hiroshi Yamashita
{"title":"非线性半定规划的原对偶内点信赖域法收敛到二阶临界点","authors":"Hiroshi Yamashita","doi":"10.1080/10556788.2022.2060973","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a primal-dual interior point trust-region method for solving nonlinear semidefinite programming problems, in which the iterates converge to a point that satisfies the first-order and second-order optimality conditions. The method consists of the outer iteration (SDPIP-revised) that finds a Karush-Kuhn-Tucker (KKT) point which satisfies the second-order optimality condition, and the inner iteration (SDPTR-revised) that calculates an approximate barrier KKT point. Algorithm SDPTR-revised uses a commutative class of Newton-like directions within the framework of the trust-region method in the primal-dual space. In addition, we also use a direction of negative curvature when it exists. The proposed algorithm employs a new method that generates negative-curvature directions in the existence of -type penalty term for equality constraints. It is proved that there exists a limit point of the generated sequence which satisfies the second-order optimality condition along with the barrier KKT conditions.","PeriodicalId":124811,"journal":{"name":"Optimization Methods and Software","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Convergence to a second-order critical point by a primal-dual interior point trust-region method for nonlinear semidefinite programming\",\"authors\":\"Hiroshi Yamashita\",\"doi\":\"10.1080/10556788.2022.2060973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a primal-dual interior point trust-region method for solving nonlinear semidefinite programming problems, in which the iterates converge to a point that satisfies the first-order and second-order optimality conditions. The method consists of the outer iteration (SDPIP-revised) that finds a Karush-Kuhn-Tucker (KKT) point which satisfies the second-order optimality condition, and the inner iteration (SDPTR-revised) that calculates an approximate barrier KKT point. Algorithm SDPTR-revised uses a commutative class of Newton-like directions within the framework of the trust-region method in the primal-dual space. In addition, we also use a direction of negative curvature when it exists. The proposed algorithm employs a new method that generates negative-curvature directions in the existence of -type penalty term for equality constraints. It is proved that there exists a limit point of the generated sequence which satisfies the second-order optimality condition along with the barrier KKT conditions.\",\"PeriodicalId\":124811,\"journal\":{\"name\":\"Optimization Methods and Software\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimization Methods and Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10556788.2022.2060973\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Methods and Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10556788.2022.2060973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种求解非线性半定规划问题的原始-对偶内点信任域方法,该方法的迭代收敛于满足一阶和二阶最优性条件的点。该方法由寻找满足二阶最优性条件的Karush-Kuhn-Tucker (KKT)点的外部迭代(sdpip -修正)和计算近似障碍KKT点的内部迭代(sdptr -修正)组成。改进的sdptr算法在原对偶空间的信任域方法框架内使用了类牛顿方向的交换类。另外,当存在负曲率时,我们也使用负曲率方向。该算法采用了一种新的方法,在存在型惩罚项的等式约束条件下生成负曲率方向。证明了所生成的序列存在一个极限点,该极限点满足二阶最优性条件和障壁KKT条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence to a second-order critical point by a primal-dual interior point trust-region method for nonlinear semidefinite programming
In this paper, we propose a primal-dual interior point trust-region method for solving nonlinear semidefinite programming problems, in which the iterates converge to a point that satisfies the first-order and second-order optimality conditions. The method consists of the outer iteration (SDPIP-revised) that finds a Karush-Kuhn-Tucker (KKT) point which satisfies the second-order optimality condition, and the inner iteration (SDPTR-revised) that calculates an approximate barrier KKT point. Algorithm SDPTR-revised uses a commutative class of Newton-like directions within the framework of the trust-region method in the primal-dual space. In addition, we also use a direction of negative curvature when it exists. The proposed algorithm employs a new method that generates negative-curvature directions in the existence of -type penalty term for equality constraints. It is proved that there exists a limit point of the generated sequence which satisfies the second-order optimality condition along with the barrier KKT conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信