矩阵-收缩方法SVD的并行化

Halil Snopçe, Ilir Spahiu
{"title":"矩阵-收缩方法SVD的并行化","authors":"Halil Snopçe, Ilir Spahiu","doi":"10.1109/IMCSIT.2010.5679743","DOIUrl":null,"url":null,"abstract":"In this paper we investigate the parallelization of Hestenes-Jacobi method for computing the SVD of an MXN matrix using systolic arrays. In the case of real matrix an array of R2 processors is proposed, such that each row contains N columns. In order to extend this idea we have presented three transformations which are used for transforming the complex into the real matrix. After the additional computations, we show how the same array may be used for the SVD of a complex matrix.","PeriodicalId":147803,"journal":{"name":"Proceedings of the International Multiconference on Computer Science and Information Technology","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Parallelization of SVD of a matrix-systolic approach\",\"authors\":\"Halil Snopçe, Ilir Spahiu\",\"doi\":\"10.1109/IMCSIT.2010.5679743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we investigate the parallelization of Hestenes-Jacobi method for computing the SVD of an MXN matrix using systolic arrays. In the case of real matrix an array of R2 processors is proposed, such that each row contains N columns. In order to extend this idea we have presented three transformations which are used for transforming the complex into the real matrix. After the additional computations, we show how the same array may be used for the SVD of a complex matrix.\",\"PeriodicalId\":147803,\"journal\":{\"name\":\"Proceedings of the International Multiconference on Computer Science and Information Technology\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Multiconference on Computer Science and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMCSIT.2010.5679743\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Multiconference on Computer Science and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMCSIT.2010.5679743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文研究了用收缩阵列计算MXN矩阵SVD的Hestenes-Jacobi方法的并行化问题。在实矩阵的情况下,提出了一个R2处理器阵列,使得每行包含N列。为了扩展这一思想,我们提出了将复矩阵转化为实矩阵的三种变换。在额外的计算之后,我们将展示如何将相同的数组用于复矩阵的SVD。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallelization of SVD of a matrix-systolic approach
In this paper we investigate the parallelization of Hestenes-Jacobi method for computing the SVD of an MXN matrix using systolic arrays. In the case of real matrix an array of R2 processors is proposed, such that each row contains N columns. In order to extend this idea we have presented three transformations which are used for transforming the complex into the real matrix. After the additional computations, we show how the same array may be used for the SVD of a complex matrix.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信