基于自适应社会稀疏度的音频去噪

Clément Gaultier, Srdan Kitic, N. Bertin, R. Gribonval
{"title":"基于自适应社会稀疏度的音频去噪","authors":"Clément Gaultier, Srdan Kitic, N. Bertin, R. Gribonval","doi":"10.23919/EUSIPCO.2017.8081411","DOIUrl":null,"url":null,"abstract":"This work aims at introducing a new algorithm, AUDASCITY, and comparing its performance to the time-frequency block thresholding algorithm for the ill-posed problem of audio denoising. We propose a heuristics which combines time-frequency structure, cosparsity, and an adaptive scheme to denoise audio signals corrupted with white noise. We report that AUDASCITY outperforms state-of-the-art for each numerical comparison. While there is still room for some perceptual improvements, AUDASCITY's usefulness is shown when used as a front-end for a classification task.","PeriodicalId":346811,"journal":{"name":"2017 25th European Signal Processing Conference (EUSIPCO)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"AUDASCITY: AUdio denoising by adaptive social CosparsITY\",\"authors\":\"Clément Gaultier, Srdan Kitic, N. Bertin, R. Gribonval\",\"doi\":\"10.23919/EUSIPCO.2017.8081411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work aims at introducing a new algorithm, AUDASCITY, and comparing its performance to the time-frequency block thresholding algorithm for the ill-posed problem of audio denoising. We propose a heuristics which combines time-frequency structure, cosparsity, and an adaptive scheme to denoise audio signals corrupted with white noise. We report that AUDASCITY outperforms state-of-the-art for each numerical comparison. While there is still room for some perceptual improvements, AUDASCITY's usefulness is shown when used as a front-end for a classification task.\",\"PeriodicalId\":346811,\"journal\":{\"name\":\"2017 25th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 25th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/EUSIPCO.2017.8081411\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2017.8081411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本工作旨在介绍一种新的算法AUDASCITY,并将其性能与用于音频去噪的病态问题的时频块阈值算法进行比较。我们提出了一种结合时频结构、协稀疏性和自适应方案的启发式方法来去除被白噪声污染的音频信号。我们报告说,AUDASCITY在每个数值比较中都优于最先进的技术。虽然在感知方面仍有一些改进的空间,但当将AUDASCITY用作分类任务的前端时,它的实用性得到了体现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AUDASCITY: AUdio denoising by adaptive social CosparsITY
This work aims at introducing a new algorithm, AUDASCITY, and comparing its performance to the time-frequency block thresholding algorithm for the ill-posed problem of audio denoising. We propose a heuristics which combines time-frequency structure, cosparsity, and an adaptive scheme to denoise audio signals corrupted with white noise. We report that AUDASCITY outperforms state-of-the-art for each numerical comparison. While there is still room for some perceptual improvements, AUDASCITY's usefulness is shown when used as a front-end for a classification task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信