{"title":"图3P4的Turàn编号","authors":"H. Bielak, S. Kieliszek","doi":"10.2478/UMCSMATH-2014-0003","DOIUrl":null,"url":null,"abstract":"Let \\(ex(n, G)\\) denote the maximum number of edges in a graph on \\(n\\) vertices which does not contain \\(G\\) as a subgraph. Let \\(P_i\\) denote a path consisting of \\(i\\) vertices and let \\(mP_i\\) denote \\(m\\) disjoint copies of \\(P_i\\). In this paper we count \\(ex(n, 3P_4)\\).","PeriodicalId":340819,"journal":{"name":"Annales Umcs, Mathematica","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"The Turàn number of the graph 3P4\",\"authors\":\"H. Bielak, S. Kieliszek\",\"doi\":\"10.2478/UMCSMATH-2014-0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let \\\\(ex(n, G)\\\\) denote the maximum number of edges in a graph on \\\\(n\\\\) vertices which does not contain \\\\(G\\\\) as a subgraph. Let \\\\(P_i\\\\) denote a path consisting of \\\\(i\\\\) vertices and let \\\\(mP_i\\\\) denote \\\\(m\\\\) disjoint copies of \\\\(P_i\\\\). In this paper we count \\\\(ex(n, 3P_4)\\\\).\",\"PeriodicalId\":340819,\"journal\":{\"name\":\"Annales Umcs, Mathematica\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Umcs, Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/UMCSMATH-2014-0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Umcs, Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/UMCSMATH-2014-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Let \(ex(n, G)\) denote the maximum number of edges in a graph on \(n\) vertices which does not contain \(G\) as a subgraph. Let \(P_i\) denote a path consisting of \(i\) vertices and let \(mP_i\) denote \(m\) disjoint copies of \(P_i\). In this paper we count \(ex(n, 3P_4)\).