图3P4的Turàn编号

H. Bielak, S. Kieliszek
{"title":"图3P4的Turàn编号","authors":"H. Bielak, S. Kieliszek","doi":"10.2478/UMCSMATH-2014-0003","DOIUrl":null,"url":null,"abstract":"Let \\(ex(n, G)\\) denote the maximum number of edges in a graph on \\(n\\) vertices which does not contain \\(G\\) as a subgraph. Let \\(P_i\\) denote a path consisting of \\(i\\) vertices and let \\(mP_i\\) denote \\(m\\) disjoint copies of \\(P_i\\). In this paper we count \\(ex(n, 3P_4)\\).","PeriodicalId":340819,"journal":{"name":"Annales Umcs, Mathematica","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"The Turàn number of the graph 3P4\",\"authors\":\"H. Bielak, S. Kieliszek\",\"doi\":\"10.2478/UMCSMATH-2014-0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let \\\\(ex(n, G)\\\\) denote the maximum number of edges in a graph on \\\\(n\\\\) vertices which does not contain \\\\(G\\\\) as a subgraph. Let \\\\(P_i\\\\) denote a path consisting of \\\\(i\\\\) vertices and let \\\\(mP_i\\\\) denote \\\\(m\\\\) disjoint copies of \\\\(P_i\\\\). In this paper we count \\\\(ex(n, 3P_4)\\\\).\",\"PeriodicalId\":340819,\"journal\":{\"name\":\"Annales Umcs, Mathematica\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Umcs, Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/UMCSMATH-2014-0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Umcs, Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/UMCSMATH-2014-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

设\(ex(n, G)\)表示在不包含\(G\)作为子图的\(n\)顶点上的图中的最大边数。设\(P_i\)表示由\(i\)个顶点组成的路径,并设\(mP_i\)表示\(m\)个不相交的\(P_i\)副本。在本文中,我们计算\(ex(n, 3P_4)\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Turàn number of the graph 3P4
Let \(ex(n, G)\) denote the maximum number of edges in a graph on \(n\) vertices which does not contain \(G\) as a subgraph. Let \(P_i\) denote a path consisting of \(i\) vertices and let \(mP_i\) denote \(m\) disjoint copies of \(P_i\). In this paper we count \(ex(n, 3P_4)\).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信