流新闻文档分析的动态图模型

E. Hohman, D. Marchette
{"title":"流新闻文档分析的动态图模型","authors":"E. Hohman, D. Marchette","doi":"10.1109/CIDM.2007.368911","DOIUrl":null,"url":null,"abstract":"In this paper we consider the problem of analyzing streaming documents, in particular streaming news stories. The system is designed to extract statistics from the document, incorporate these into a graph-based model, and discard the document to reduce storage requirements. The model is defined in terms of a changing lexicon and sub-lexicons at each node in the graph, with the nodes of the graph representing topics. An approximation to the TFIDF term weighting is introduced. We illustrate the methodology on a dataset of news articles, and discuss the dynamic nature of the model","PeriodicalId":423707,"journal":{"name":"2007 IEEE Symposium on Computational Intelligence and Data Mining","volume":"2015 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Dynamic Graph Model for Analyzing Streaming News Documents\",\"authors\":\"E. Hohman, D. Marchette\",\"doi\":\"10.1109/CIDM.2007.368911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we consider the problem of analyzing streaming documents, in particular streaming news stories. The system is designed to extract statistics from the document, incorporate these into a graph-based model, and discard the document to reduce storage requirements. The model is defined in terms of a changing lexicon and sub-lexicons at each node in the graph, with the nodes of the graph representing topics. An approximation to the TFIDF term weighting is introduced. We illustrate the methodology on a dataset of news articles, and discuss the dynamic nature of the model\",\"PeriodicalId\":423707,\"journal\":{\"name\":\"2007 IEEE Symposium on Computational Intelligence and Data Mining\",\"volume\":\"2015 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Symposium on Computational Intelligence and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIDM.2007.368911\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Symposium on Computational Intelligence and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIDM.2007.368911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们考虑分析流文档的问题,特别是流新闻故事。该系统旨在从文档中提取统计信息,将其合并到基于图的模型中,并丢弃文档以减少存储需求。该模型是根据图中每个节点上不断变化的词汇和子词汇来定义的,图的节点表示主题。介绍了TFIDF项加权的近似方法。我们在新闻文章的数据集上说明了该方法,并讨论了该模型的动态性质
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Dynamic Graph Model for Analyzing Streaming News Documents
In this paper we consider the problem of analyzing streaming documents, in particular streaming news stories. The system is designed to extract statistics from the document, incorporate these into a graph-based model, and discard the document to reduce storage requirements. The model is defined in terms of a changing lexicon and sub-lexicons at each node in the graph, with the nodes of the graph representing topics. An approximation to the TFIDF term weighting is introduced. We illustrate the methodology on a dataset of news articles, and discuss the dynamic nature of the model
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信