在小域上通过随机Vandermonde和Cauchy矩阵构造MDS码

Son Hoang Dau, Wentu Song, A. Sprintson, C. Yuen
{"title":"在小域上通过随机Vandermonde和Cauchy矩阵构造MDS码","authors":"Son Hoang Dau, Wentu Song, A. Sprintson, C. Yuen","doi":"10.1109/ALLERTON.2015.7447110","DOIUrl":null,"url":null,"abstract":"Vandermonde and Cauchy matrices are commonly used in the constructions of maximum distance separable (MDS) codes. However, when additional design constraints are imposed on the code construction in addition to the MDS requirement, a Vandermonde or Cauchy matrix may not always suffice. We discuss some related coding problems of that nature that arise in different practical settings. We present a useful technique to tackle the constrained coding problems that includes random selection of the evaluation points of a Vandermonde or a Cauchy matrix. Our solutions require small finite fields whose sizes are polynomial in the dimensions of the generator matrices. We believe that this technique will be useful for solving a broad range of coding problems.","PeriodicalId":112948,"journal":{"name":"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Constructions of MDS codes via random Vandermonde and Cauchy matrices over small fields\",\"authors\":\"Son Hoang Dau, Wentu Song, A. Sprintson, C. Yuen\",\"doi\":\"10.1109/ALLERTON.2015.7447110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vandermonde and Cauchy matrices are commonly used in the constructions of maximum distance separable (MDS) codes. However, when additional design constraints are imposed on the code construction in addition to the MDS requirement, a Vandermonde or Cauchy matrix may not always suffice. We discuss some related coding problems of that nature that arise in different practical settings. We present a useful technique to tackle the constrained coding problems that includes random selection of the evaluation points of a Vandermonde or a Cauchy matrix. Our solutions require small finite fields whose sizes are polynomial in the dimensions of the generator matrices. We believe that this technique will be useful for solving a broad range of coding problems.\",\"PeriodicalId\":112948,\"journal\":{\"name\":\"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ALLERTON.2015.7447110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2015.7447110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

范德蒙矩阵和柯西矩阵是最大距离可分离码的常用构造方法。然而,当除了MDS要求之外,在代码构造上施加额外的设计约束时,Vandermonde或Cauchy矩阵可能并不总是足够的。我们讨论了在不同的实际环境中出现的一些相关的编码问题。我们提出了一种有用的技术来解决约束编码问题,包括随机选择Vandermonde矩阵或Cauchy矩阵的评估点。我们的解决方案需要小的有限域,其大小是生成器矩阵维数的多项式。我们相信,这种技术将有助于解决广泛的编码问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constructions of MDS codes via random Vandermonde and Cauchy matrices over small fields
Vandermonde and Cauchy matrices are commonly used in the constructions of maximum distance separable (MDS) codes. However, when additional design constraints are imposed on the code construction in addition to the MDS requirement, a Vandermonde or Cauchy matrix may not always suffice. We discuss some related coding problems of that nature that arise in different practical settings. We present a useful technique to tackle the constrained coding problems that includes random selection of the evaluation points of a Vandermonde or a Cauchy matrix. Our solutions require small finite fields whose sizes are polynomial in the dimensions of the generator matrices. We believe that this technique will be useful for solving a broad range of coding problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信