基于模糊演化卡尔曼滤波的RBF神经网络及其在矿山安全监测中的应用

Yong Zhang, Qingdong Du, Shidong Yu, Jeng-Shyang Pan
{"title":"基于模糊演化卡尔曼滤波的RBF神经网络及其在矿山安全监测中的应用","authors":"Yong Zhang, Qingdong Du, Shidong Yu, Jeng-Shyang Pan","doi":"10.1109/HIS.2009.96","DOIUrl":null,"url":null,"abstract":"Fuzzy information fusion methods are adopted widely to resolve the complicated nonlinear problems in recent years. This paper proposes a fusion learning algorithm of radial basis function (RBF) neural network based on fuzzy evolution Kalman filtering. By using this proposed method, monitoring data are extracted and optimized in mine safety monitoring, and Matlab simulation results are analyzed. The results show that this method has feasibility and rapid learning efficiency, which can improve precision and reliability in mine monitoring systems.","PeriodicalId":414085,"journal":{"name":"2009 Ninth International Conference on Hybrid Intelligent Systems","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"RBF Neural Network Based on Fuzzy Evolution Kalman Filtering and Application in Mine Safety Monitoring\",\"authors\":\"Yong Zhang, Qingdong Du, Shidong Yu, Jeng-Shyang Pan\",\"doi\":\"10.1109/HIS.2009.96\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fuzzy information fusion methods are adopted widely to resolve the complicated nonlinear problems in recent years. This paper proposes a fusion learning algorithm of radial basis function (RBF) neural network based on fuzzy evolution Kalman filtering. By using this proposed method, monitoring data are extracted and optimized in mine safety monitoring, and Matlab simulation results are analyzed. The results show that this method has feasibility and rapid learning efficiency, which can improve precision and reliability in mine monitoring systems.\",\"PeriodicalId\":414085,\"journal\":{\"name\":\"2009 Ninth International Conference on Hybrid Intelligent Systems\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Ninth International Conference on Hybrid Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HIS.2009.96\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Ninth International Conference on Hybrid Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIS.2009.96","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

近年来,模糊信息融合方法被广泛用于解决复杂的非线性问题。提出了一种基于模糊进化卡尔曼滤波的径向基函数神经网络融合学习算法。利用该方法对矿井安全监测中的监测数据进行了提取和优化,并对Matlab仿真结果进行了分析。结果表明,该方法具有可行性和快速学习效率,可提高矿井监测系统的精度和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RBF Neural Network Based on Fuzzy Evolution Kalman Filtering and Application in Mine Safety Monitoring
Fuzzy information fusion methods are adopted widely to resolve the complicated nonlinear problems in recent years. This paper proposes a fusion learning algorithm of radial basis function (RBF) neural network based on fuzzy evolution Kalman filtering. By using this proposed method, monitoring data are extracted and optimized in mine safety monitoring, and Matlab simulation results are analyzed. The results show that this method has feasibility and rapid learning efficiency, which can improve precision and reliability in mine monitoring systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信