用进化计算方法改进软件质量预测模型

R. Vivanco
{"title":"用进化计算方法改进软件质量预测模型","authors":"R. Vivanco","doi":"10.1109/ICSM.2007.4362671","DOIUrl":null,"url":null,"abstract":"Predictive models can be used to identify components as potentially problematic for future maintenance. Source code metrics can be used as input features to classifiers, however, there exist a large number of structural measures that capture different aspects of coupling, cohesion, inheritance, complexity and size. Feature selection is the process of identifying a subset of attributes that improves a classifier's performance. The focus of this study is to explore the efficacy of a genetic algorithm as a method of improving a classifier's ability to identify problematic components.","PeriodicalId":211605,"journal":{"name":"International Conference on Smart Multimedia","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Improving Predictive Models of Software Quality Using an Evolutionary Computational Approach\",\"authors\":\"R. Vivanco\",\"doi\":\"10.1109/ICSM.2007.4362671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predictive models can be used to identify components as potentially problematic for future maintenance. Source code metrics can be used as input features to classifiers, however, there exist a large number of structural measures that capture different aspects of coupling, cohesion, inheritance, complexity and size. Feature selection is the process of identifying a subset of attributes that improves a classifier's performance. The focus of this study is to explore the efficacy of a genetic algorithm as a method of improving a classifier's ability to identify problematic components.\",\"PeriodicalId\":211605,\"journal\":{\"name\":\"International Conference on Smart Multimedia\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Smart Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSM.2007.4362671\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Smart Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSM.2007.4362671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

预测模型可用于识别未来维护中可能存在问题的组件。源代码度量可以用作分类器的输入特征,然而,存在大量捕获耦合、内聚、继承、复杂性和大小的不同方面的结构性度量。特征选择是识别属性子集以提高分类器性能的过程。本研究的重点是探讨遗传算法作为一种提高分类器识别有问题成分的能力的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving Predictive Models of Software Quality Using an Evolutionary Computational Approach
Predictive models can be used to identify components as potentially problematic for future maintenance. Source code metrics can be used as input features to classifiers, however, there exist a large number of structural measures that capture different aspects of coupling, cohesion, inheritance, complexity and size. Feature selection is the process of identifying a subset of attributes that improves a classifier's performance. The focus of this study is to explore the efficacy of a genetic algorithm as a method of improving a classifier's ability to identify problematic components.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信