基于分类小波系数细节的动态反传播网络的灰度图像人脸检测

L. Yeong, L. Ang, K. Seng
{"title":"基于分类小波系数细节的动态反传播网络的灰度图像人脸检测","authors":"L. Yeong, L. Ang, K. Seng","doi":"10.1109/CIS.2007.230","DOIUrl":null,"url":null,"abstract":"A dynamic counterpropagation network based on the forward only counterpropagation network (CPN) is applied to face detection in this paper. The network, called the dynamic supervised forward-propagation network (DSFPN) trains using a supervised algorithm and can grow dynamically during training allowing subclasses in the training data to be learnt. The network is trained using the categorized wavelet coefficients of the image as features of the image. The results suggests a 98% correct detection rate can be achieved with 4% false positives by increasing network complexity.","PeriodicalId":127238,"journal":{"name":"2007 International Conference on Computational Intelligence and Security (CIS 2007)","volume":"42 11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Face Detection from Greyscale Images Using Details from Categorized Wavelet Coefficients as Features for a Dynamic Counterpropagation Network\",\"authors\":\"L. Yeong, L. Ang, K. Seng\",\"doi\":\"10.1109/CIS.2007.230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A dynamic counterpropagation network based on the forward only counterpropagation network (CPN) is applied to face detection in this paper. The network, called the dynamic supervised forward-propagation network (DSFPN) trains using a supervised algorithm and can grow dynamically during training allowing subclasses in the training data to be learnt. The network is trained using the categorized wavelet coefficients of the image as features of the image. The results suggests a 98% correct detection rate can be achieved with 4% false positives by increasing network complexity.\",\"PeriodicalId\":127238,\"journal\":{\"name\":\"2007 International Conference on Computational Intelligence and Security (CIS 2007)\",\"volume\":\"42 11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Conference on Computational Intelligence and Security (CIS 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIS.2007.230\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Computational Intelligence and Security (CIS 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2007.230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

将一种基于前向反传播网络(CPN)的动态反传播网络应用于人脸检测。该网络被称为动态监督前向传播网络(DSFPN),使用监督算法进行训练,并且可以在训练过程中动态增长,从而允许学习训练数据中的子类。使用图像的分类小波系数作为图像的特征来训练网络。结果表明,通过提高网络复杂性,可以实现98%的正确检测率和4%的误报。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Face Detection from Greyscale Images Using Details from Categorized Wavelet Coefficients as Features for a Dynamic Counterpropagation Network
A dynamic counterpropagation network based on the forward only counterpropagation network (CPN) is applied to face detection in this paper. The network, called the dynamic supervised forward-propagation network (DSFPN) trains using a supervised algorithm and can grow dynamically during training allowing subclasses in the training data to be learnt. The network is trained using the categorized wavelet coefficients of the image as features of the image. The results suggests a 98% correct detection rate can be achieved with 4% false positives by increasing network complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信