I. Tsampoulatidis, Nikolaos Gkalelis, A. Dimou, V. Mezaris, Y. Kompatsiaris
{"title":"基于判别视觉概念的高级事件检测系统","authors":"I. Tsampoulatidis, Nikolaos Gkalelis, A. Dimou, V. Mezaris, Y. Kompatsiaris","doi":"10.1145/1991996.1992064","DOIUrl":null,"url":null,"abstract":"This paper demonstrates a new approach to detecting high-level events that may be depicted in images or video frames. Given a non-annotated content item, a large number of previously trained visual concept detectors are applied to it and their responses are used for representing the content item with a model vector in a high-dimensional concept space. Subsequently, an improved subclass discriminant analysis method is used for identifying a concept subspace within the aforementioned concept space, that is most appropriate for detecting and recognizing the target high-level events. In this subspace, the nearest neighbor rule is used for comparing the non-annotated content item with a few known example instances of the target events. The high-level events used as target events in the present version of the system are those defined for the TRECVID 2010 Multimedia Event Detection (MED) task.","PeriodicalId":390933,"journal":{"name":"Proceedings of the 1st ACM International Conference on Multimedia Retrieval","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"High-level event detection system based on discriminant visual concepts\",\"authors\":\"I. Tsampoulatidis, Nikolaos Gkalelis, A. Dimou, V. Mezaris, Y. Kompatsiaris\",\"doi\":\"10.1145/1991996.1992064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper demonstrates a new approach to detecting high-level events that may be depicted in images or video frames. Given a non-annotated content item, a large number of previously trained visual concept detectors are applied to it and their responses are used for representing the content item with a model vector in a high-dimensional concept space. Subsequently, an improved subclass discriminant analysis method is used for identifying a concept subspace within the aforementioned concept space, that is most appropriate for detecting and recognizing the target high-level events. In this subspace, the nearest neighbor rule is used for comparing the non-annotated content item with a few known example instances of the target events. The high-level events used as target events in the present version of the system are those defined for the TRECVID 2010 Multimedia Event Detection (MED) task.\",\"PeriodicalId\":390933,\"journal\":{\"name\":\"Proceedings of the 1st ACM International Conference on Multimedia Retrieval\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1st ACM International Conference on Multimedia Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1991996.1992064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st ACM International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1991996.1992064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High-level event detection system based on discriminant visual concepts
This paper demonstrates a new approach to detecting high-level events that may be depicted in images or video frames. Given a non-annotated content item, a large number of previously trained visual concept detectors are applied to it and their responses are used for representing the content item with a model vector in a high-dimensional concept space. Subsequently, an improved subclass discriminant analysis method is used for identifying a concept subspace within the aforementioned concept space, that is most appropriate for detecting and recognizing the target high-level events. In this subspace, the nearest neighbor rule is used for comparing the non-annotated content item with a few known example instances of the target events. The high-level events used as target events in the present version of the system are those defined for the TRECVID 2010 Multimedia Event Detection (MED) task.