鼻咽CT图像金属伪影减少的改进对比非配对平移

Yu-Hsing Hsieh, Jia-Da Li, Yao Lee, Chu-Song Chen, LiFu Wu, S. H. Cheng
{"title":"鼻咽CT图像金属伪影减少的改进对比非配对平移","authors":"Yu-Hsing Hsieh, Jia-Da Li, Yao Lee, Chu-Song Chen, LiFu Wu, S. H. Cheng","doi":"10.1109/CAI54212.2023.00152","DOIUrl":null,"url":null,"abstract":"Metal artifacts (MA) reduction is crucial for clinical application yet often lacks paired training data. Learning MA reduction from unpaired data and enforcing fidelity seems a trade-off. The study proposed an improved contrastive unpaired translation solution to address the issues and demonstrate its efficacy.","PeriodicalId":129324,"journal":{"name":"2023 IEEE Conference on Artificial Intelligence (CAI)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Contrastive Unpaired Translation for Metal Artifacts Reduction in Nasopharyngeal CT Images\",\"authors\":\"Yu-Hsing Hsieh, Jia-Da Li, Yao Lee, Chu-Song Chen, LiFu Wu, S. H. Cheng\",\"doi\":\"10.1109/CAI54212.2023.00152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metal artifacts (MA) reduction is crucial for clinical application yet often lacks paired training data. Learning MA reduction from unpaired data and enforcing fidelity seems a trade-off. The study proposed an improved contrastive unpaired translation solution to address the issues and demonstrate its efficacy.\",\"PeriodicalId\":129324,\"journal\":{\"name\":\"2023 IEEE Conference on Artificial Intelligence (CAI)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Conference on Artificial Intelligence (CAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAI54212.2023.00152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Conference on Artificial Intelligence (CAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAI54212.2023.00152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

金属伪影(MA)还原是临床应用的关键,但往往缺乏成对的训练数据。从非配对数据中学习MA约简和增强保真度似乎是一种权衡。本研究提出了一种改进的对比非配对翻译方案来解决这些问题并证明其有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved Contrastive Unpaired Translation for Metal Artifacts Reduction in Nasopharyngeal CT Images
Metal artifacts (MA) reduction is crucial for clinical application yet often lacks paired training data. Learning MA reduction from unpaired data and enforcing fidelity seems a trade-off. The study proposed an improved contrastive unpaired translation solution to address the issues and demonstrate its efficacy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信