Mohammad Khavari Tavana, Yifan Sun, Nicolas Bohm Agostini, D. Kaeli
{"title":"利用自适应数据压缩提高多gpu系统中计算工作负载的性能和能效","authors":"Mohammad Khavari Tavana, Yifan Sun, Nicolas Bohm Agostini, D. Kaeli","doi":"10.1109/IPDPS.2019.00075","DOIUrl":null,"url":null,"abstract":"Graphics Processing Unit (GPU) performance has relied heavily on our ability to scale of number of transistors on chip, in order to satisfy the ever-increasing demands for more computation. However, transistor scaling has become extremely challenging, limiting the number of transistors that can be crammed onto a single die. Manufacturing large, fast and energy-efficient monolithic GPUs, while growing the number of stream processing units on-chip, is no longer a viable solution to scale performance. GPU vendors are aiming to exploit multi-GPU solutions, interconnecting multiple GPUs in the single node with a high bandwidth network (such as NVLink), or exploiting Multi-Chip-Module (MCM) packaging, where multiple GPU modules are integrated in a single package. The inter-GPU bandwidth is an expensive and critical resource for designing multi-GPU systems. The design of the inter-GPU network can impact performance significantly. To address this challenge, in this paper we explore the potential of hardware-based memory compression algorithms to save bandwidth and improve energy efficiency in multi-GPU systems. Specifically, we propose an adaptive inter-GPU data compression scheme to efficiently improve both performance and energy efficiency. Our evaluation shows that the proposed optimization on multi-GPU architectures can reduce the inter-GPU traffic up to 62%, improve system performance by up to 33%, and save energy spent powering the communication fabric by 45%, on average.","PeriodicalId":403406,"journal":{"name":"2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Exploiting Adaptive Data Compression to Improve Performance and Energy-Efficiency of Compute Workloads in Multi-GPU Systems\",\"authors\":\"Mohammad Khavari Tavana, Yifan Sun, Nicolas Bohm Agostini, D. Kaeli\",\"doi\":\"10.1109/IPDPS.2019.00075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graphics Processing Unit (GPU) performance has relied heavily on our ability to scale of number of transistors on chip, in order to satisfy the ever-increasing demands for more computation. However, transistor scaling has become extremely challenging, limiting the number of transistors that can be crammed onto a single die. Manufacturing large, fast and energy-efficient monolithic GPUs, while growing the number of stream processing units on-chip, is no longer a viable solution to scale performance. GPU vendors are aiming to exploit multi-GPU solutions, interconnecting multiple GPUs in the single node with a high bandwidth network (such as NVLink), or exploiting Multi-Chip-Module (MCM) packaging, where multiple GPU modules are integrated in a single package. The inter-GPU bandwidth is an expensive and critical resource for designing multi-GPU systems. The design of the inter-GPU network can impact performance significantly. To address this challenge, in this paper we explore the potential of hardware-based memory compression algorithms to save bandwidth and improve energy efficiency in multi-GPU systems. Specifically, we propose an adaptive inter-GPU data compression scheme to efficiently improve both performance and energy efficiency. Our evaluation shows that the proposed optimization on multi-GPU architectures can reduce the inter-GPU traffic up to 62%, improve system performance by up to 33%, and save energy spent powering the communication fabric by 45%, on average.\",\"PeriodicalId\":403406,\"journal\":{\"name\":\"2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPS.2019.00075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2019.00075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Exploiting Adaptive Data Compression to Improve Performance and Energy-Efficiency of Compute Workloads in Multi-GPU Systems
Graphics Processing Unit (GPU) performance has relied heavily on our ability to scale of number of transistors on chip, in order to satisfy the ever-increasing demands for more computation. However, transistor scaling has become extremely challenging, limiting the number of transistors that can be crammed onto a single die. Manufacturing large, fast and energy-efficient monolithic GPUs, while growing the number of stream processing units on-chip, is no longer a viable solution to scale performance. GPU vendors are aiming to exploit multi-GPU solutions, interconnecting multiple GPUs in the single node with a high bandwidth network (such as NVLink), or exploiting Multi-Chip-Module (MCM) packaging, where multiple GPU modules are integrated in a single package. The inter-GPU bandwidth is an expensive and critical resource for designing multi-GPU systems. The design of the inter-GPU network can impact performance significantly. To address this challenge, in this paper we explore the potential of hardware-based memory compression algorithms to save bandwidth and improve energy efficiency in multi-GPU systems. Specifically, we propose an adaptive inter-GPU data compression scheme to efficiently improve both performance and energy efficiency. Our evaluation shows that the proposed optimization on multi-GPU architectures can reduce the inter-GPU traffic up to 62%, improve system performance by up to 33%, and save energy spent powering the communication fabric by 45%, on average.