Pigi Kouki, J. Pujara, C. Marcum, L. Koehly, L. Getoor
{"title":"家庭网络中的集体实体解析","authors":"Pigi Kouki, J. Pujara, C. Marcum, L. Koehly, L. Getoor","doi":"10.1109/ICDM.2017.32","DOIUrl":null,"url":null,"abstract":"Entity resolution in settings with rich relational structure often introduces complex dependencies between co-references. Exploiting these dependencies is challenging - it requires seamlessly combining statistical, relational, and logical dependencies. One task of particular interest is entity resolution in familial networks. In this setting, multiple partial representations of a family tree are provided, from the perspective of different family members, and the challenge is to reconstruct a family tree from these multiple, noisy, partial views. This reconstruction is crucial for applications such as understanding genetic inheritance, tracking disease contagion, and performing census surveys. Here, we design a model that incorporates statistical signals, such as name similarity, relational information, such as sibling overlap, and logical constraints, such as transitivity and bijective matching, in a collective model. We show how to integrate these features using probabilistic soft logic, a scalable probabilistic programming framework. In experiments on real-world data, our model significantly outperforms state-of-the-art classifiers that use relational features but are incapable of collective reasoning.","PeriodicalId":254086,"journal":{"name":"2017 IEEE International Conference on Data Mining (ICDM)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Collective Entity Resolution in Familial Networks\",\"authors\":\"Pigi Kouki, J. Pujara, C. Marcum, L. Koehly, L. Getoor\",\"doi\":\"10.1109/ICDM.2017.32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Entity resolution in settings with rich relational structure often introduces complex dependencies between co-references. Exploiting these dependencies is challenging - it requires seamlessly combining statistical, relational, and logical dependencies. One task of particular interest is entity resolution in familial networks. In this setting, multiple partial representations of a family tree are provided, from the perspective of different family members, and the challenge is to reconstruct a family tree from these multiple, noisy, partial views. This reconstruction is crucial for applications such as understanding genetic inheritance, tracking disease contagion, and performing census surveys. Here, we design a model that incorporates statistical signals, such as name similarity, relational information, such as sibling overlap, and logical constraints, such as transitivity and bijective matching, in a collective model. We show how to integrate these features using probabilistic soft logic, a scalable probabilistic programming framework. In experiments on real-world data, our model significantly outperforms state-of-the-art classifiers that use relational features but are incapable of collective reasoning.\",\"PeriodicalId\":254086,\"journal\":{\"name\":\"2017 IEEE International Conference on Data Mining (ICDM)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Data Mining (ICDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2017.32\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Data Mining (ICDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2017.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Entity resolution in settings with rich relational structure often introduces complex dependencies between co-references. Exploiting these dependencies is challenging - it requires seamlessly combining statistical, relational, and logical dependencies. One task of particular interest is entity resolution in familial networks. In this setting, multiple partial representations of a family tree are provided, from the perspective of different family members, and the challenge is to reconstruct a family tree from these multiple, noisy, partial views. This reconstruction is crucial for applications such as understanding genetic inheritance, tracking disease contagion, and performing census surveys. Here, we design a model that incorporates statistical signals, such as name similarity, relational information, such as sibling overlap, and logical constraints, such as transitivity and bijective matching, in a collective model. We show how to integrate these features using probabilistic soft logic, a scalable probabilistic programming framework. In experiments on real-world data, our model significantly outperforms state-of-the-art classifiers that use relational features but are incapable of collective reasoning.