Ekrem Kocaguneli, Gregory Gay, T. Menzies, Ye Yang, J. Keung
{"title":"何时使用来自其他项目的数据进行工作量估计","authors":"Ekrem Kocaguneli, Gregory Gay, T. Menzies, Ye Yang, J. Keung","doi":"10.1145/1858996.1859061","DOIUrl":null,"url":null,"abstract":"Collecting the data required for quality prediction within a development team is time-consuming and expensive. An alternative to make predictions using data that crosses from other projects or even other companies. We show that with/without relevancy filtering, imported data performs the same/worse (respectively) than using local data. Therefore, we recommend the use of relevancy filtering whenever generating estimates using data from another project.","PeriodicalId":341489,"journal":{"name":"Proceedings of the 25th IEEE/ACM International Conference on Automated Software Engineering","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":"{\"title\":\"When to use data from other projects for effort estimation\",\"authors\":\"Ekrem Kocaguneli, Gregory Gay, T. Menzies, Ye Yang, J. Keung\",\"doi\":\"10.1145/1858996.1859061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Collecting the data required for quality prediction within a development team is time-consuming and expensive. An alternative to make predictions using data that crosses from other projects or even other companies. We show that with/without relevancy filtering, imported data performs the same/worse (respectively) than using local data. Therefore, we recommend the use of relevancy filtering whenever generating estimates using data from another project.\",\"PeriodicalId\":341489,\"journal\":{\"name\":\"Proceedings of the 25th IEEE/ACM International Conference on Automated Software Engineering\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"59\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th IEEE/ACM International Conference on Automated Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1858996.1859061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th IEEE/ACM International Conference on Automated Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1858996.1859061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
When to use data from other projects for effort estimation
Collecting the data required for quality prediction within a development team is time-consuming and expensive. An alternative to make predictions using data that crosses from other projects or even other companies. We show that with/without relevancy filtering, imported data performs the same/worse (respectively) than using local data. Therefore, we recommend the use of relevancy filtering whenever generating estimates using data from another project.