获取用于白细胞自动分类的深度学习模型

P. Rodrigues, Getúlio Igrejas, Romeu Ferreira Beato
{"title":"获取用于白细胞自动分类的深度学习模型","authors":"P. Rodrigues, Getúlio Igrejas, Romeu Ferreira Beato","doi":"10.4018/978-1-7998-3095-5.ch001","DOIUrl":null,"url":null,"abstract":"In this work, the authors classify leukocyte images using the neural network architectures that won the annual ILSVRC competition. The classification of leukocytes is made using pretrained networks and the same networks trained from scratch in order to select the ones that achieve the best performance for the intended task. The categories used are eosinophils, lymphocytes, monocytes, and neutrophils. The analysis of the results takes into account the amount of training required, the regularization techniques used, the training time, and the accuracy in image classification. The best classification results, on the order of 98%, suggest that it is possible, considering a competent preprocessing, to train a network like the DenseNet with 169 or 201 layers, in about 100 epochs, to classify leukocytes in microscopy images.","PeriodicalId":207322,"journal":{"name":"Machine Learning and Deep Learning in Real-Time Applications","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Obtaining Deep Learning Models for Automatic Classification of Leukocytes\",\"authors\":\"P. Rodrigues, Getúlio Igrejas, Romeu Ferreira Beato\",\"doi\":\"10.4018/978-1-7998-3095-5.ch001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, the authors classify leukocyte images using the neural network architectures that won the annual ILSVRC competition. The classification of leukocytes is made using pretrained networks and the same networks trained from scratch in order to select the ones that achieve the best performance for the intended task. The categories used are eosinophils, lymphocytes, monocytes, and neutrophils. The analysis of the results takes into account the amount of training required, the regularization techniques used, the training time, and the accuracy in image classification. The best classification results, on the order of 98%, suggest that it is possible, considering a competent preprocessing, to train a network like the DenseNet with 169 or 201 layers, in about 100 epochs, to classify leukocytes in microscopy images.\",\"PeriodicalId\":207322,\"journal\":{\"name\":\"Machine Learning and Deep Learning in Real-Time Applications\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Learning and Deep Learning in Real-Time Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/978-1-7998-3095-5.ch001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning and Deep Learning in Real-Time Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-7998-3095-5.ch001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,作者使用赢得年度ILSVRC竞赛的神经网络架构对白细胞图像进行分类。白细胞的分类是使用预训练网络和从头开始训练的相同网络进行的,以便选择那些在预期任务中达到最佳性能的网络。使用的分类是嗜酸性粒细胞、淋巴细胞、单核细胞和中性粒细胞。对结果的分析考虑了所需的训练量、使用的正则化技术、训练时间和图像分类的准确性。最好的分类结果约为98%,这表明,考虑到有效的预处理,训练一个像DenseNet这样有169或201层的网络,在大约100次的时间里,对显微镜图像中的白细胞进行分类是可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Obtaining Deep Learning Models for Automatic Classification of Leukocytes
In this work, the authors classify leukocyte images using the neural network architectures that won the annual ILSVRC competition. The classification of leukocytes is made using pretrained networks and the same networks trained from scratch in order to select the ones that achieve the best performance for the intended task. The categories used are eosinophils, lymphocytes, monocytes, and neutrophils. The analysis of the results takes into account the amount of training required, the regularization techniques used, the training time, and the accuracy in image classification. The best classification results, on the order of 98%, suggest that it is possible, considering a competent preprocessing, to train a network like the DenseNet with 169 or 201 layers, in about 100 epochs, to classify leukocytes in microscopy images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信